Purpose: Aldesleukin, recombinant human IL2, is an effective immunotherapy for metastatic melanoma and renal cancer, with durable responses in approximately 10% of patients; however, severe side effects limit maximal dosing and thus the number of patients able to receive treatment and potential cure. NKTR-214 is a prodrug of conjugated IL2, retaining the same amino acid sequence as aldesleukin. The IL2 core is conjugated to 6 releasable polyethylene glycol (PEG) chains. In vivo, the PEG chains slowly release to generate active IL2 conjugates.Experimental Design: We evaluated the bioactivity and receptor binding of NKTR-214 and its active IL2 conjugates in vitro; the tumor immunology, tumor pharmacokinetics, and efficacy of NKTR-214 as a single agent and in combination with anti-CTLA-4 antibody in murine tumor models. Tolerability was evaluated in non-human primates.
Integrin-basement membrane interactions provide essential signals that promote survival and growth of epithelial cells, whereas loss of such adhesions triggers programmed cell death. We found that HSC-3 human squamous carcinoma cells survived and grew readily as monolayers, but when they were suspended as single cells, they ceased proliferating and entered into the apoptotic death pathway, characterized by DNA fragmentation. In contrast, if the suspended carcinoma cells were permitted to form E-cadherin-mediated multicellular aggregates, they not only survived but proliferated. However, aggregated normal keratinocytes were unable to survive in suspension culture and rapidly became apoptotic. Anchorage independence and resistance to apoptosis of HSC-3 cell aggregates required high levels of extracellular Ca 2؉ and was inhibited with function-perturbing anti-E-cadherin antibody. Resistance to suspension-induced apoptosis in cell aggregates paralleled the up-regulation of Bcl-2 but occurred in the absence of focal adhesion kinase activation. Analysis of suspension-induced death in a set of cloned squamous epithelial cell lines with different levels of E-cadherin expression revealed that receptor-positive cell clones evaded apoptosis and proliferated in three-dimensional aggregate culture, whereas cadherin-negative clones failed to survive. Collectively, these observations indicate that cadherin-mediated intercellular adhesions generate a compensatory mechanism that promotes anchorage-independent growth and suppresses apoptosis.
Recent evidence suggests that IL-1beta-mediated glucotoxicity plays a critical role in type 2 diabetes mellitus. Although previous work has shown that inhibiting IL-1beta can lead to improvements in glucose control and beta-cell function, we hypothesized that more efficient targeting of IL-1beta with a novel monoclonal antibody, XOMA 052, would reveal an effect on additional parameters affecting metabolic disease. In the diet-induced obesity model, XOMA 052 was administered to mice fed either normal or high-fat diet (HFD) for up to 19 wk. XOMA 052 was administered as a prophylactic treatment or as a therapy. Mice were analyzed for glucose tolerance, insulin tolerance, insulin secretion, and lipid profile. In addition, the pancreata were analyzed for beta-cell apoptosis, proliferation, and beta-cell mass. Mice on HFD exhibited elevated glucose and glycated hemoglobin levels, impaired glucose tolerance and insulin secretion, and elevated lipid profile, which were prevented by XOMA 052. XOMA 052 also reduced beta-cell apoptosis and increased beta-cell proliferation. XOMA 052 maintained the HFD-induced compensatory increase in beta-cell mass, while also preventing the loss in beta-cell mass seen with extended HFD feeding. Analysis of fasting insulin and glucose levels suggests that XOMA 052 prevented HFD-induced insulin resistance. These studies provide new evidence that targeting IL-1beta in vivo could improve insulin sensitivity and lead to beta-cell sparing. This is in addition to previously reported benefits on glycemic control. Taken together, the data presented suggest that XOMA 052 could be effective for treating many aspects of type 2 diabetes mellitus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.