Solar-driven photocatalytic approach is an attractive, clean, and effective way for decontamination of water. In this work, visible-light-activated TiO 2 nanoflakes (TNFs) and carbondoped TiO 2 nanoflakes (C-TNFs) were synthesized via a facile hydrothermal route using different carbon sources. The assynthesized nanostructures were successfully characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM), critically disclosing the anatase nature containing titanium−oxygen having flake/plateletlike morphology with ∼32 nm in size, respectively. The photocatalytic activity was characterized via the degradation of methylene blue (MB) and bacterial inactivation of Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The experimental results showed that C-TNFs significantly enhanced photocatalytic activity compared to bare TNFs. It was found that TNF nanocatalysts exhibited superior photocatalytic activity against photodegradation of MB (92.7%) and antibacterial activity (85.6%) under sunlight irradiation. In addition, reduced graphene oxide (RGO)-TNFs have a good recycling ability and are expected to be a promising candidate for photocatalytic applications under sunlight. Consequentially, the higher activity of RGO-TNF nanocatalysts under sunlight irradiation for organic degradation and bacterial inactivation implies that hydrothermal synthesis allows for the preparation of efficient and low-cost carbon-doped photocatalysts for the photodegradation of a wide range of environmental pollutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.