Partial monosomy of the long arm of chromosome 7 has been characterized by wide phenotypic manifestations, but holoprosencephaly (HPE) and sacral agenesis have frequently been associated with this chromosomal deletion. A clear relationship between genotype and phenotype remains to be defined in the 7q deletion syndrome. Three patients (1, 2, and 3) were investigated with 7q terminal deletion and compared with similar deletion cases in the literature in order to stratify the phenotypes associated with 7q35 and 7q36 terminal deletion patients. Patients 1, 2, and 3 were carrying a de novo terminal deletion at bands 7q36.2, 7q35, and 7q36.1, respectively. In patient 3, a small Xq28 duplication was also identified by array-CGH. Our patients presented with heterogeneous phenotypic manifestations, which could imply the possible role of environmental factors (multifactorial inheritance), structural variations in the non-coding regions, penetrance, and/or polymorphism. The varying length of deletion was also taken into account. Growth retardation was the most frequent symptom found in both 7q35 and 7q36 patients we reviewed. The occurrence of HPE and sacral malformation together was seen in less than 10% of the reviewed cases in both kinds of deletion. HPE was associated mainly in cases with an unbalanced translocation.
Fluorescence in situ hybridization (FISH) and manual scanning is a widely used strategy for retrieving rare cellular events such as fetal cells in maternal blood. In order to determine the efficiency of these techniques in detection of rare cells, slides of XX cells with predefined numbers (1–10) of XY cells were prepared. Following FISH hybridization, the slides were scanned blindly for the presence of XY cells by different observers. The average detection efficiency was 84% (125/148). Evaluation of probe hybridization in the missed events showed that 9% (2/23) were not hybridized, 17% (4/23) were poorly hybridized, while the hybridization was adequate for the remaining 74% (17/23). In conclusion, manual scanning is a relatively efficient method to recover rare cellular events, but about 16% of the events are missed; therefore, the number of fetal cells per unit volume of maternal blood has probably been underestimated when using manual scanning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.