Noninvasive systemic gene delivery to the central nervous system (CNS) has largely been impeded by the blood-brain barrier (BBB). Recent studies documented widespread CNS gene transfer after intravascular delivery of recombinant adeno-associated virus 9 (rAAV9). To investigate alternative and possibly more potent rAAV vectors for systemic gene delivery across the BBB, we systematically evaluated the CNS gene transfer properties of nine different rAAVEGFP vectors after intravascular infusion in neonatal mice. Several rAAVs efficiently transduce neurons, motor neurons, astrocytes, and Purkinje cells; among them, rAAVrh.10 is at least as efficient as rAAV9 in many of the regions examined. Importantly, intravenously delivered rAAVs did not cause abnormal microgliosis in the CNS. The rAAVs that achieve stable widespread gene transfer in the CNS are exceptionally useful platforms for the development of therapeutic approaches for neurological disorders affecting large regions of the CNS as well as convenient biological tools for neuroscience research.
Some recombinant adeno-associated viruses (rAAVs) can cross the neonatal blood-brain barrier (BBB) and efficiently transduce cells of the central nervous system (CNS). However, in the adult CNS, transduction levels by systemically delivered rAAVs are significantly reduced, limiting their potential for CNS gene therapy. Here, we characterized 12 different rAAVEGFPs in the adult mouse CNS following intravenous delivery. We show that the capability of crossing the adult BBB and achieving widespread CNS transduction is a common character of AAV serotypes tested. Of note, rAAVrh.8 is the leading vector for robust global transduction of glial and neuronal cell types in regions of clinical importance such as cortex, caudate-putamen, hippocampus, corpus callosum, and substantia nigra. It also displays reduced peripheral tissue tropism compared to other leading vectors. Additionally, we evaluated rAAVrh.10 with and without microRNA (miRNA)-regulated expressional detargeting from peripheral tissues for systemic gene delivery to the CNS in marmosets. Our results indicate that rAAVrh.8, along with rh.10 and 9, hold the best promise for developing novel therapeutic strategies to treat neurological diseases in the adult patient population. Additionally, systemically delivered rAAVrh.10 can transduce the CNS efficiently, and its transgene expression can be limited in the periphery by endogenous miRNAs in adult marmosets.
Recombinant adeno-associated viruses (rAAVs) that can cross the blood–brain-barrier and achieve efficient and stable transvascular gene transfer to the central nervous system (CNS) hold significant promise for treating CNS disorders. However, following intravascular delivery, these vectors also target liver, heart, skeletal muscle, and other tissues, which may cause untoward effects. To circumvent this, we used tissue-specific, endogenous microRNAs (miRNAs) to repress rAAV expression outside the CNS, by engineering perfectly complementary miRNA-binding sites into the rAAV9 genome. This approach allowed simultaneous multi-tissue regulation and CNS-directed stable transgene expression without detectably perturbing the endogenous miRNA pathway. Regulation of rAAV expression by miRNA was primarily via site-specific cleavage of the transgene mRNA, generating specific 5′ and 3′ mRNA fragments. Our findings promise to facilitate the development of miRNA-regulated rAAV for CNS-targeted gene delivery and other applications.
Epilepsy is a disease of recurrent seizures that can develop after a wide range of brain insults. Although surgical resection of focal regions of seizure onset can result in clinical improvement, the molecular mechanisms that produce and maintain focal hyperexcitability are not understood. Here, we demonstrate a regional, persistent induction of a common group of genes in human epileptic neocortex in 17 patients with neocortical epilepsy, regardless of the underlying pathology. This relatively small group of common genes, identified using complementary DNA microarrays and confirmed with quantitative reverse transcription polymerase chain reaction and immunostaining, include the immediate early gene transcription factors EGR-1, EGR-2, and c-fos, with roles in learning and memory, and signaling genes such as the dual-specificity kinase/phosphatase MKP-3. Maximal expression of these genes was observed in neurons in neocortical layers II through IV. These neurons also showed persistent cyclic adenosine monophosphate response element binding protein (CREB) activation and nuclear translocation of EGR-2 and c-fos proteins. In two patients, local interictal epileptiform discharge frequencies correlated precisely with the expression of these genes, suggesting that these genes either are directly modulated by the degree of epileptic activity or help sustain ongoing epileptic activity. The identification of a common set of genes and the persistent activation of CREB signaling in human epileptic foci provide a clinically relevant set of biological markers with potential importance for developing future diagnostic and therapeutic options in human epilepsy. 2005;58:736 -747 Ann Neurol
Canavan's disease (CD) is a fatal pediatric leukodystrophy caused by mutations in aspartoacylase (AspA) gene. Currently, there is no effective treatment for CD; however, gene therapy is an attractive approach to ameliorate the disease. Here, we studied progressive neuropathology and gene therapy in short-lived (≤ 1 month) AspA(-/-) mice, a bona-fide animal model for the severest form of CD. Single intravenous (IV) injections of several primate-derived recombinant adeno-associated viruses (rAAVs) as late as postnatal day 20 (P20) completely rescued their early lethality and alleviated the major disease symptoms, extending survival in P0-injected rAAV9 and rAAVrh8 groups to as long as 2 years thus far. We successfully used microRNA (miRNA)-mediated post-transcriptional detargeting for the first time to restrict therapeutic rAAV expression in the central nervous system (CNS) and minimize potentially deleterious effects of transgene overexpression in peripheral tissues. rAAV treatment globally improved CNS myelination, although some abnormalities persisted in the content and distribution of myelin-specific and -enriched lipids. We demonstrate that systemically delivered and CNS-restricted rAAVs can serve as efficacious and sustained gene therapeutics in a model of a severe neurodegenerative disorder even when administered as late as P20.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.