BackgroundWomen harboring BRCA1/2 germline mutations have high lifetime risk of developing breast/ovarian cancer. The recommendation to pursue BRCA1/2 testing is based on patient’s family history of breast/ovarian cancer, age of disease-onset and/or pathologic parameters of breast tumors. Here, we investigated if diagnosis of triple-negative breast cancer (TNBC) independently increases risk of carrying a BRCA1/2 mutation in Pakistan.MethodsFive hundred and twenty-three breast cancer patients including 237 diagnosed ≤ 30 years of age and 286 with a family history of breast/ovarian cancer were screened for BRCA1/2 small-range mutations and large genomic rearrangements. Immunohistochemical analyses were performed at one center. Univariate and multiple logistic regression models were used to investigate possible differences in prevalence of BRCA1/2 mutations according to patient and tumor characteristics.ResultsThirty-seven percent of patients presented with TNBC. The prevalence of BRCA1 mutations was higher in patients with TNBC than non-TNBC (37 % vs. 10 %, P < 0.0001). 1 % of TNBC patients were observed to have BRCA2 mutations. Subgroup analyses revealed a larger proportion of BRCA1 mutations in TNBC than non-TNBC among patients 1) diagnosed at early-age with no family history of breast/ovarian cancer (14 % vs. 5 %, P = 0.03), 2) diagnosed at early-age irrespective of family history (28 % vs. 11 %, P = 0.0003), 3) had a family history of breast cancer (49 % vs. 12 %, P < 0.0001), and 4) those with family history of breast and ovarian cancer (81 % vs. 28 %, P = 0.0005). TNBC patients harboring BRCA1 mutations were diagnosed at a later age than non-carriers (median age at diagnosis: 30 years (range 22–53) vs. 28 years (range 18–67), P = 0.002). The association between TNBC status and presence of BRCA1 mutations was independent of the simultaneous consideration of family phenotype, tumor histology and grade in a multiple logistic regression model (Ratio of the probability of carrying BRCA1/2 mutations for TNBC vs. non-TNBC 4.23; 95 % CI 2.50–7.14; P < 0.0001).ConclusionGenetic BRCA1 testing should be considered for Pakistani women diagnosed with TNBC.Electronic supplementary materialThe online version of this article (doi:10.1186/s12885-016-2698-y) contains supplementary material, which is available to authorized users.
Ageing is a complex process characterised by a systemic and progressive deterioration of biological functions. As ageing is associated with an increased prevalence of age-related chronic disorders, understanding its underlying molecular mechanisms can pave the way for therapeutic interventions and managing complications. Animal models such as mice are commonly used in ageing research as they have a shorter lifespan in comparison to humans and are also genetically close to humans. To assess the translatability of mouse ageing to human ageing, the urinary proteome in 89 wild-type (C57BL/6) mice aged between 8–96 weeks was investigated using capillary electrophoresis coupled to mass spectrometry (CE-MS). Using age as a continuous variable, 295 peptides significantly correlated with age in mice were identified. To investigate the relevance of using mouse models in human ageing studies, a comparison was performed with a previous correlation analysis using 1227 healthy subjects. In mice and humans, a decrease in urinary excretion of fibrillar collagens and an increase of uromodulin fragments was observed with advanced age. Of the 295 peptides correlating with age, 49 had a strong homology to the respective human age-related peptides. These ortholog peptides including several collagen (N = 44) and uromodulin (N = 5) fragments were used to generate an ageing classifier that was able to discriminate the age among both wild-type mice and healthy subjects. Additionally, the ageing classifier depicted that telomerase knock-out mice were older than their chronological age. Hence, with a focus on ortholog urinary peptides mouse ageing can be translated to human ageing.
Introduction: Advanced glycation end products (AGEs) are a heterogeneous group of molecules with potential pathophysiological effects on the kidneys. Fibrosis together with the accumulation of AGEs has been investigated for its contribution to age-related decline in renal function. AGEs mediate their effects in large parts through their interactions with the receptor for AGEs (RAGE). RAGE is a transmembrane protein that belongs to the immunoglobulin superfamily and has the ability to interact with multiple pro-inflammatory/pro-oxidative ligands. The role of RAGE in aging kidneys has not been fully characterized, especially for sex-based differences.Methods: Therefore, we analyzed constitutive RAGE knockout (KO) mice in an age- and sex-dependent manner. Paraffin-embedded kidney sections were used for histological analysis and protein expression of fibrosis and damage markers. RNA expression analysis from the kidney cortex was done by qPCR for AGE receptors, kidney damage, and early inflammation/fibrosis factors. FACS analysis was used for immune cell profiling of the kidneys.Results: Histological analysis revealed enhanced infiltration of immune cells (positive for B220) in aged (>70 weeks old) KO mice in both sexes. FACS analysis revealed a similar pattern of enhanced B-1a cells in aged KO mice. There was an age-based increase in pro-fibrotic and pro-inflammatory markers (IL-6, TNF, TGF-β1, and SNAIL1) in KO male mice that presumably contributed to renal fibrosis and renal damage (glomerular and tubular). In fact, in KO mice, there was an age-dependent increase in renal damage (assessed by NGAL and KIM1) that was accompanied by increased fibrosis (assessed by CTGF). This effect was more pronounced in male KO mice than in the female KO mice. In contrast to the KO animals, no significant increase in damage markers was detectable in wild-type animals at the age examined (>70 weeks old). Moreover, there is an age-based increase in AGEs and scavenger receptor MSR-A2 in the kidneys.Discussion: Our data suggest that the loss of the clearance receptor RAGE in male animals further accelerates age-dependent renal damage; this could be in part due to an increase in AGEs load during aging and the absence of protective female hormones. By contrast, in females, RAGE expression seems to play only a minor role when compared to tissue pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.