The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.
High latitudes contain nearly half of global soil carbon, prompting interest in understanding how the Arctic terrestrial carbon balance will respond to rising temperatures. Low temperatures suppress the activity of soil biota, retarding decomposition and nitrogen release, which limits plant and microbial growth. Warming initially accelerates decomposition, increasing nitrogen availability, productivity and woody-plant dominance. However, these responses may be transitory, because coupled abiotic-biotic feedback loops that alter soil-temperature dynamics and change the structure and activity of soil communities, can develop. Here we report the results of a two-decade summer warming experiment in an Alaskan tundra ecosystem. Warming increased plant biomass and woody dominance, indirectly increased winter soil temperature, homogenized the soil trophic structure across horizons and suppressed surface-soil-decomposer activity, but did not change total soil carbon or nitrogen stocks, thereby increasing net ecosystem carbon storage. Notably, the strongest effects were in the mineral horizon, where warming increased decomposer activity and carbon stock: a 'biotic awakening' at depth.
Summary Ecosystems across the biosphere are subject to rapid changes in elemental balance and climatic regimes. A major force structuring ecological responses to these perturbations lies in the stoichiometric flexibility of systems – the ability to adjust their elemental balance whilst maintaining function. The potential for stoichiometric flexibility underscores the utility of the application of a framework highlighting the constraints and consequences of elemental mass balance and energy cycling in biological systems to address global change phenomena. Improvement in the modeling of ecological responses to disturbance requires the consideration of the stoichiometric flexibility of systems within and across relevant scales. Although a multitude of global change studies over various spatial and temporal scales exist, the explicit consideration of the role played by stoichiometric flexibility in linking micro‐scale to macro‐scale biogeochemical processes in terrestrial ecosystems remains relatively unexplored. Focusing on terrestrial systems under change, we discuss the mechanisms by which stoichiometric flexibility might be expressed and connected from organisms to ecosystems. We suggest that the transition from the expression of stoichiometric flexibility within individuals to the community and ecosystem scales is a key mechanism regulating the extent to which environmental perturbation may alter ecosystem carbon and nutrient cycling dynamics.
Ecologists have long observed that consumers can maintain species diversity in communities of their prey. Many theories of how consumers mediate diversity invoke a tradeoff between species' competitive ability and their ability to withstand predation. Under this constraint, the best competitors are also most susceptible to consumers, preventing them from excluding other species. However, empirical evidence for competition-defense tradeoffs is limited and, as such, the mechanisms by which consumers regulate diversity remain uncertain. We performed a meta-analysis of 36 studies to evaluate the prevalence of the competition-defense tradeoff and its role in maintaining diversity in plant communities. We quantified species' responses to experimental resource addition and consumer removal as estimates of competitive ability and resistance to consumers, respectively. With this analysis, we found mixed empirical evidence for a competition-defense tradeoff; in fact, competitive ability tended to be weakly positively correlated with defense overall. However, when present, negative relationships between competitive ability and defense influenced species diversity in the manner predicted by theory. In the minority of communities for which a tradeoff was detected, species evenness was higher, and resource addition and consumer removal reduced diversity. Our analysis reframes the commonly held notion that consumers structure plant communities through a competition-defense tradeoff. Such a tradeoff can maintain diversity when present, but negative correlations between competitive ability and defense were less common than is often assumed. In this respect, this study supports an emerging theoretical paradigm in which predation interacts with competition to both enhance and reduce species diversity.meta-analysis | resource limitation | predation | species diversity I dentifying processes that maintain species diversity in the face of competitive exclusion is a key goal of ecology (1). Because consumers can alter the outcome of competition between their prey, consumer-based mechanisms are commonly invoked to explain species coexistence (2-4). Many empirical (5-7) and theoretical studies (8-10) have suggested that consumers maintain species diversity when predation differentially harms superior competitors. For example, Lubchenco (3) showed that snail herbivory increased algal diversity in tide pools only when preferred prey were also the competitive dominant. Similar requirements for consumers to maintain diversity of their prey have been formalized in mathematical models: when competing species share both resources and consumers, coexistence is possible only if the prey species that are superior competitors for resources are also less resistant to predation (9, 10).However, a large gap has developed between the empirical evidence supporting this theoretical tradeoff and its application to explain how consumers regulate real communities. For the many studies that have invoked a tradeoff between competitive ability and defense aga...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.