The thrombolytic therapy with clinically approved drugs often ensues with recurrent thrombosis caused by thrombin-induced platelet aggregation from the clot debris. In order to minimize these problems, a staphylokinase (SAK)-based bacterial friendly multifunctional recombinant protein SRH (staphylokinase (SAK) linked with tripeptide RGD and dodecapeptide Hirulog (SRH)) was constructed to have Hirulog as an antithrombin agent and RGD (Arg-Gly-Asp) as an antiplatelet agent in the present study. This multifunctional fusion protein SRH was expressed in osmotically inducible E. coli GJ1158 as soluble form and purified with a yield of 0.27 g/L and functionally characterized in vitro. SRH retained the fibrinolytic activity and plasminogen activation rate comparable to the parental counterpart SAK. The antithrombin activity of SRH was significantly higher than SAK. The platelet rich clot lysis assay indicated that SRH had enhanced platelet binding activity and T 50% and C50 of SRH were significantly lower than that of SAK. Furthermore, SRH inhibited the ADP-induced platelet aggregation in dose-dependent manner while SAK had no significant effect on platelet aggregation. Thus, the current study suggests that the SAK variant produced from osmotically inducible GJ1158 is more potent thrombolytic agent with antithrombin and antiplatelet aggregation activities for reduction of reocclusion in thrombolytic therapy.
Interleukin-25 (IL-17E) is a novel Th2 pro-inflammatory cytokine belongs to the member of IL-17 cytokine family. In the present study, bioactive recombinant human IL-25 (rhIL-25), the cDNA of mature IL-25 was synthesized using nested PCR and codon bias of prokaryotic host Escherichia coli. The desired template was cloned into the MCS region of expression vector pET28 a+. The recombinant vector was transformed into maintenance host Escherichia coli DH5α and the transformants were selected by kanamycin resistance marker. Expression was carried out using IPTG inducible Escherichia coli BL21(DE3) in different media like LB, terrific broth and M9 media. Among all, terrific broth was used for the enhanced production of rhIL-25. SDS-PAGE analysis shows 31 kDa proteins against low molecular weight protein marker. Refolding of inclusion bodies with denaturation buffer (25 mM Tris-HCl [pH 7.2], 5 M Urea, 20 mM β-ME and 200 mM NaCl) yields the rhIL-25 at a concentration of ~ 86 mg/L at 37 0 C, where it is high when compared with the expression at 20 0 C (~ 16.5 mg/L). Western blot analysis was carried out using anti human IL-17E/IL-25 antibodies. Biological activity of rhIL-25 was determined by the release of IL-6 from PBMC cells. For the first time, under the conditions of current good manufacturing practice (cGMP), bioactive recombinant IL-25 was produced at large scale in soluble form using industrially feasible bacterial host Escherichia coli BL21(DE3).
Production of antimicrobial peptides has gained lot of significance in the present day research. Most of the recombinant proteins are generally produced from IPTG inducible E. coli BL21(DE3). As an alternative, considering the factors like cost and toxic nature of IPTG, salt inducible Escherichia coli GJ1158 was used in the present study for the production of synthetic cationic antimicrobial peptide by fed batch fermentation. This study was conducted to optimize the physico-chemical parameters viz., dissolved oxygen concentration (DOC) and nutritional factors viz., carbon, nitrogen and phosphate sources on bacterial growth and peptide production. Even after increase in DOC more than 30 % in batch culture has no effect on expression, but significant improvement in fed-batch cultivation was observed beyond 30% DOC. Supplementation of production medium with different pulses of nutrient sources like dextrose mono hydrate, yeast extract and Na 2 HPO 4 enhanced the expression in fed batch fermentation process even without disturbing the cell growth at 40 % DOC. When growth reached 15 g/L of dry cell weight, culture was induced with 150 mM NaCl and further cultured for next 15 hr (16.37 g/L dry cell weight). Approximately, 258 mg/L of pure peptide was obtained by using modified GYEON medium. The peptide thus produced is tested for its antimicrobial activity, devoid of hemolytic activity. The fed-batch fermentation which emphasizes, this was the highest reported concentration of recombinant synthetic peptide from salt inducible expression host till to date, which manages to gratify the present day industrial production of the peptides cost-effectively.
Engineered synthetic cationic antimicrobial peptides are the potential alternative drugs to existing antibiotics. In the present study, a novel attempt for the intracellular production of engineered synthetic cationic antimicrobial peptide (escAMP) using Pichia pastoris was studied. The engineered synthetic cationic antimicrobial peptide gene was synthesized using overlapping PCR. An entirokinase and hydroxylamine hydrochloride cleavage sites are incorporated at N-and C-terminal end of escAMP respectively for easy purification. Later the gene was inserted into the MCS region of pPICZ-B vector. The synthetic peptide under the AOX1 promoter was integrated into the Pichia pastoris GS115 genome and the recombinant clones were screened by using antibiotic resistance. Expression profiles of recombinant peptide were done using glycerol and methanol based synthetic medium and analysed on 18 % Tricine-SDS-PAGE. Purification of the expressed peptide was done after cell disruption (10 cycles on time, 10 cycles off time and 10 min of total time) using 6X histidine tag followed by enzymatic cleavage. In this study, 67 gm of dry cell weight/L and 580 mg/L of purified escAMP was produced. The purified peptide is analysed for its anti microbial activity against different Gram positive and Gram negative microbes. For the first time smallest engineered synthetic cationic peptide was designed, cloned and expressed from methanol inducible Pichia pastoris GS115 and production ranges are encouraging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.