While Fischer-Tropsch synthesis (FTS) using coal and natural gas in conventional reactors is an almost well-established technology, the production of liquid hydrocarbons from syngas obtained from biomass is in its preliminary stages of commercialization in countries like Germany. With concerns about global warming and ways of disposing of CO2 being searched for, CO2 hydrogenation using FTS to liquid hydrocarbons can act as a CO2 sink. A brief review of FTS using CO2-rich syngas is given in this paper, looking at FTS as a technology that can help reduce global warming and as a process integration alternative. The reverse water gas shift (r-WGS) reaction is vital for CO2 hydrogenation. We have studied the effect of this using an FT kinetic model and have proposed a new flow sheet alternative for FTS using CO2-rich syngas. Simulations suggested that this new process gives better conversion of CO2. The product selectivity and yields from an FT plant are vital to make the process viable economically.
In this paper, we study the potential of entrainer in reactive distillation involving high boiling reactants to decrease the reactive stage temperature and for separation of one of the products to enhance the conversion. Esterification of ethylene glycol with acetic acid in the presence of Amberlyst 36 with 1,2-dichloro ethane (EDC), as an entrainer, is chosen as the model reaction. The effect of different parameters on selectivity of diacetate of ethylene glycol (DAEG) in entrainer based reactive distillation (EBRD) has been studied both through experiments and simulations. The results show that, by using entrainer, it is possible to obtain close to 100% selectivity toward diester even with a stoichiometric mole ratio, which is otherwise not possible in a conventional reactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.