In this study, a new algorithm is proposed by employing artificial neural networks in a sequential manner, termed the sequential artificial neural network, to obtain a global solution for optimizing the drilling location of oil or gas reservoirs. The developed sequential artificial neural network is used to successively narrow the search space to efficiently obtain the global solution. When training each artificial neural network, pre-defined amount of data within the new search space are added to the training dataset to improve the estimation performance. When the size of the search space meets a stopping criterion, reservoir simulations are performed for data in the search space, and a global solution is determined among the simulation results. The proposed method was applied to optimise a horizontal well placement in a coalbed methane reservoir. The results show a superior performance in optimisation while significantly reducing the number of simulations compared to the particle-swarm optimisation algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.