We utilized human vascular smooth muscle cells to address the question if a G-protein-coupled receptor, the endothelin (ET) receptor, could transactivate a serine/threonine kinase receptor, specifically the transforming growth factor (TGF)-[beta] receptor, T[beta]RI. Functionality of the interaction was addressed by studying endothelin-1-stimulated proteoglycan synthesis. Signaling molecules were assessed by Western blotting and proteoglycan synthesis by [35S]sulfate and 35S-met/cys incorporation and molecular size by SDS-PAGE. Endothelin-1 treatment led to a time- and concentration-dependent increase in cytosolic phosphoSmad2C, which was inhibited by the mixed endothelin receptor antagonist bosentan and the T[beta]RI antagonist SB431542. Endothelin-1 treatment led to a time-dependent increase in nuclear phosphoSmad2C. Endothelin-1-stimulated proteoglycan synthesis was partially inhibited (40%) by SB431542 and completely blocked by bosentan. The effect of endothelin-1 to stimulate an increase in glycosaminoglycan size on biglycan was also blocked in a concentration-dependent manner by SB431542. These data extend the current paradigm of G-protein coupled receptor signaling to include the transactivation of the serine kinase receptor for TGF-[beta] (T[beta]RI). This response should be considered in the context of response to endothelin-1, and the options for therapeutically targeting endothelin-1 are accordingly broadened to include downstream signaling otherwise associated with TGF-[beta] receptor activation.
Seven transmembrane G protein—coupled receptors are among the most common in biology and they transduce cellular signals from a plethora of hormones. As well as their own well-characterized signaling pathways, they can also transactivate tyrosine kinase growth factor receptors to greatly expand their own cellular repertoire of responses. Recent data in vascular smooth muscle cells have expanded the breadth of transactivation to include serine/threonine kinase receptors, specifically the receptor for transforming growth factor beta (TGF-β). Stimulation with endothelin and thrombin leads to the rapid formation of C-terminal phosphorylated Smad2, which is the immediate product of activation of the TGF-β receptor. Additionally, it appears that no definition of transactivation based on mechanism is available, so we have provided a definition involving temporal aspects and the absence of de novo protein synthesis. The phenomenon of transactivation is an important biochemical mechanism and potential drug target in multiple diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.