4-Hydroxy[2.2]paracyclophane is readily prepared via an improved synthetic protocol from unsubstituted [2.2]paracyclophane. The key step is a Dakin oxidation of 4-formyl[2.2]paracyclophane. This allows a rapid access to large quantities of the product and an easy synthesis of the enantiopure form.
Asymmetric conjugate addition of diethylzinc to cinnamaldehyde in a co-metal-free fashion by using N,O-ligands with planar and central chirality is described. Different modulations of the ligand structure, including several combinations of the chiral units, indicate that a [2.2]paracyclophane backbone is essential for the activity and the enantioselectivity of the generated active catalyst. By using the optimized ligand, an isolated yield of 90 % was obtained with up to 99 % ee.
We present herein the first indications for dimeric structures in cometal-free asymmetric conjugate addition reactions of dialkylzinc reagents with aldehydes. These are revealed by nonlinear effect (NLE) studies. A monomer-dimer equilibrium can be assumed which explains the increase of the ee value in the product over time. Also, DOSY NMR spectroscopic measurements indicate the existence of the catalyst as [LZnEt](n) complexes in solution. Additionally, the first X-ray structure of a zinc complex with a [2.2]paracyclophane ligand was determined. The structures of the zinc complexes are supported by DFT calculations of monomeric and dimeric species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.