The problem of maximizing the performance of the detection of ischemia episodes is a difficult pattern classification problem. The motivation for developing the supervising network self-organizing map (sNet-SOM) model is to exploit this fact for designing computationally effective solutions both for the particular ischemic detection problem and for other applications that share similar characteristics. Specifically, the sNet-SOM utilizes unsupervised learning for the "simple" regions and supervised for the "difficult" ones in a two stage learning process. The unsupervised learning approach extends and adapts the self-organizing map (SOM) algorithm of Kohonen. The basic SOM is modified with a dynamic expansion process controlled with an entropy based criterion that allows the adaptive formation of the proper SOM structure. This extension proceeds until the total number of training patterns that are mapped to neurons with high entropy reduces to a size manageable numerically with a capable supervised model. The second learning phase has the objective of constructing better decision boundaries at the ambiguous regions. At this phase, a special supervised network is trained for the computationally reduced task of performing the classification at the ambiguous regions only. The utilization of sNet-SOM with supervised learning based on the radial basis functions and support vector machines has resulted in an improved accuracy of ischemia detection especially in the last case. The highly disciplined design of the generalization performance of the support vector machine allows designing the proper model for the number of patterns transferred to the supervised expert.
We present a new probabilistic symmetric key encryption scheme based on the chaotic dynamics of properly designed chaotic systems. This technique exploits the concept of virtual attractors, which are not real attractors of the underlying chaotic dynamics but are created and maintained artificially. Each virtual attractor represents a symbol of the alphabet used to encode messages. The state space is partitioned over the virtual attractors creating clusters of states. The enciphering process randomizes over the set of states mapped to a virtual attractor in order to construct the ciphertext for the transmited symbol. The receiver can reconstruct perfectly this virtual state space, given the possession of the same chaotic system of difference equations with parameters tuned perfectly to those of the transmitter. Therefore, from the ciphertext chunk corresponding to a state, the virtual attractor can be derived from the details of the virtual state space. The knowledge of the virtual attractor leads to the recovery of the transmitted symbol.We demonstrate that the new algorithm is secure, reliable and very fast. It uses discrete time chaotic recurrent systems and is simple, flexible and modular. These systems can be constructed easily dynamically from an alphanumeric encryption key. The cryptographic security of the algorithm is evaluated with combinatorial arguments. † The implementation of the presented chaotic encryption algorithms in C++ as well as the paper document are available upon request to the
Traditional biology was forced to restate some of its principles when the microRNA (miRNA) genes and their regulatory role were firstly discovered. Typically, miRNAs are small non-coding RNA molecules which have the ability to bind to the 3'untraslated region (UTR) of their mRNA target genes for cleavage or translational repression. Existing experimental techniques for their identification and the prediction of the target genes share some important limitations such as low coverage, time consuming experiments and high cost reagents. Hence, many computational methods have been proposed for these tasks to overcome these limitations. Recently, many researchers emphasized on the development of computational approaches to predict the participation of miRNA genes in regulatory networks and to analyze their transcription mechanisms. All these approaches have certain advantages and disadvantages which are going to be described in the present survey. Our work is differentiated from existing review papers by updating the methodologies list and emphasizing on the computational issues that arise from the miRNA data analysis. Furthermore, in the present survey, the various miRNA data analysis steps are treated as an integrated procedure whose aims and scope is to uncover the regulatory role and mechanisms of the miRNA genes. This integrated view of the miRNA data analysis steps may be extremely useful for all researchers even if they work on just a single step.
The paper adapts a novel Self-Organizing map called supervised Network Self-Organized Map (sNet-SOM) to the peculiarities of multi-labeled gene expression data. The sNet-SOM determines adaptively the number of clusters with a dynamic extension process. This process is driven by an inhomogeneous measure that tries to balance unsupervised, supervised and model complexity criteria. Nodes within a rectangular grid are grown at the boundary nodes, weights rippled from the internal nodes towards the outer nodes of the grid, and whole columns inserted within the map The appropriate level of expansion is determined automatically. Multiple sNet-SOM models are constructed dynamically each for a different unsupervised/supervised balance and model selection criteria are used to select the one optimum one. The results indicate that sNet-SOM yields competitive performance to other recently proposed approaches for supervised classification at a significantly reduced computational cost and it provides extensive exploratory analysis potentiality within the analysis framework. Furthermore, it explores simple design decisions that are easier to comprehend and computationally efficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.