This work presents a novel method for applying test-time augmentation (TTA) to tabular data. We used TTA along with an ensemble of 42 models to achieve higher performance on the MIT Global Open Source Severity of Illness Score dataset consisting of 131,051 ICU visits and outcomes. This method achieved an AUC of 0.915 on the private test set (19,669 admissions) and won first place at Stanford University's WiDS Datathon 2020 challenge on Kaggle, while the Acute Physiology and Chronic Health Evaluation (APACHE) IV model (commonly used for ICU survival prediction in the literature) achieved an AUC of 0.868. In addition to increasing the AUC score, our method also reduces "unfair" bias.
Machine learning-based Network Intrusion Detection Systems (NIDS) are designed to protect networks by identifying anomalous behaviors or improper uses. In recent years, advanced attacks, such as those mimicking legitimate traffic, have been developed to avoid alerting such systems. Previous works mainly focused on improving the anomaly detector itself, whereas in this paper, we introduce a novel method, Test-Time Augmentation for Network Anomaly Detection (TTANAD), which utilizes test-time augmentation to enhance anomaly detection from the data side. TTANAD leverages the temporal characteristics of traffic data and produces temporal test-time augmentations on the monitored traffic data. This method aims to create additional points of view when examining network traffic during inference, making it suitable for a variety of anomaly detector algorithms. Our experimental results demonstrate that TTANAD outperforms the baseline in all benchmark datasets and with all examined anomaly detection algorithms, according to the Area Under the Receiver Operating Characteristic (AUC) metric.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.