Methotrexate (MTX) is a commonly used chemotherapeutic agent. Oxidative stress and inflammation have been proved in the development of MTX toxicity. Paeonol is a natural phenolic compound with various pharmacological activities including antioxidant and anti-inflammatory properties. The aim of the present study was to evaluate the protective effect of paeonol against MTX-induced cardiac toxicity in rats and to evaluate the various mechanisms that underlie this effect. Paeonol (100 mg/kg) was administered orally for 10 days. MTX cardiac toxicity was induced at the end of the fifth day of the experiment, with or without paeonol pretreatment. MTX-induced cardiac damage is evidenced by a distortion in the normal cardiac histological structure, with significant oxidative and nitrosative stress shown as a significant increase in NADPH oxidase-2, malondialdehyde, and nitric oxide levels along with a decrease in reduced glutathione concentration and superoxide dismutase activity compared to the control group. MTX-induced inflammatory effects are evidenced by the increased cardiac toll-like receptor 4 (TLR4) mRNA expression and protein level as well as increased cardiac tumor necrosis factor- (TNF-) α and interleukin- (IL-) 6 levels along with increased nuclear factor- (NF-) κB/p65 immunostaining. MTX increased apoptosis as shown by the upregulation of cardiac caspase 3 immunostaining. Paeonol was able to correct the oxidative and nitrosative stress as well as the inflammatory and apoptotic parameters and restore the normal histological structure compared to MTX alone. In conclusion, paeonol has a protective effect against MTX-induced cardiac toxicity through inhibiting oxidative and nitrosative stress and suppressing the TLR4/NF-κB/TNF-α/IL-6 inflammatory pathway, as well as causing an associated reduction in the proapoptotic marker, caspase 3.
Methotrexate (MTX) is a well-known anticancer drug that causes nephrotoxicity as a side effect. To investigate the mechanisms by which paeonol, a natural phenolic compound, can protect against MTX-induced nephrotoxicity, paeonol (100 mg/kg/day orally) was given to rats for 10 days, with or without MTX (20 mg/kg once i.p. at day 5). Compared to control, MTX caused nephrotoxic effects manifested by increased serum urea and creatinine and distortion in renal histological architecture, with a significant increase in the mean glomerular diameter and upregulation of kidney injury molecule-1. MTX caused oxidative stress manifested by decreasing reduced glutathione and superoxide dismutase while increasing malondialdehyde and nitric oxide. MTX also induced renal inflammation by upregulating TLR4, NF-κB, and IL-1β and caused apoptosis by induction of caspase 3. Administering paeonol with MTX improved kidney functional and structural parameters, as well as all oxidative, inflammatory, and apoptotic markers tested. Interestingly, both MTX and paeonol increased the expression of the renal efflux transporter P-glycoprotein (P-gp) that helps in MTX elimination, and their drug combination further upregulated renal P-gp. In silico, paeonol was neither a substrate nor an inhibitor of P-gp, suggesting that its effect on P-gp is not on functional but on the expression level. In vitro, paeonol and MTX were administered to colon cancer cells and their combination caused a progressive cellular cytotoxic effect, which was dose-dependent with the increase of paeonol concentration. In conclusion, paeonol protects against MTX-induced nephrotoxicity through antioxidant, anti-inflammatory, and antiapoptotic mechanisms and might potentiate MTX chemotherapeutic efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.