In machine learning for computer vision based applications, Convolutional Neural Network (CNN) is the most widely used technique for image classification. Despite these deep neural networks efficiency, choosing their optimal architecture for a given task remains an open problem. In fact, CNNs performance depends on many hyper-parameters namely CNN depth, convolutional layer number, filters number and their respective sizes. Many CNN structures have been manually designed by researchers and then evaluated to verify their efficiency. In this paper, our contribution is to propose an innovative approach, labeled Enhanced Elite CNN Model Propagation (Enhanced E-CNN-MP), to automatically learn the optimal structure of a CNN. To traverse the large search space of candidate solutions our approach is based on Genetic Algorithms (GA). These meta-heuristic algorithms are wellknown for non-deterministic problem resolution. Simulations demonstrate the ability of the designed approach to compute optimal CNN hyper-parameters in a given classification task. Classification accuracy of the designed CNN based on Enhanced E-CNN-MP method, exceed that of public CNN even with the use of the Transfer Learning technique. Our contribution advances the current state by offering to scientists, regardless of their field of research, the ability of designing optimal CNNs for any particular classification problem.
Hereby in this paper, we are going to refer image classification. The main issue in image classification is features extraction and image vector representation. We expose the Bag of Features method used to find image representation. Class prediction accuracy of varying classifiers algorithms is measured on Caltech 101 images. For feature extraction functions we evaluate the use of the classical Speed Up Robust Features technique against global color feature extraction. The purpose of our work is to guess the best machine learning framework techniques to recognize the stop sign images.The trained model will be integrated into a robotic system in a future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.