Calcium (Ca 2+) is an essential signaling molecule that controls a wide range of biological functions. In the immune system, calcium signals play a central role in a variety of cellular functions such as proliferation, differentiation, apoptosis, and numerous gene transcriptions. During an immune response, the engagement of T-cell and B-cell antigen receptors induces a decrease in the intracellular Ca 2+ store and then activates store-operated Ca 2+ entry (SOCE) to raise the intracellular Ca 2+ concentration, which is mediated by the Ca 2+ release-activated Ca 2+ (CRAC) channels. Recently, identification of the two critical regulators of the CRAC channel, stromal interaction molecule (STIM) and Orai1, has broadened our understanding of the regulatory mechanisms of Ca 2+ signaling in lymphocytes. Repetitive or prolonged increase in intracellular Ca 2+ is required for the calcineurin-mediated dephosphorylation of the nuclear factor of an activated T cell (NFAT). Recent data indicate that Ca 2+-calcineurin-NFAT1 to 4 pathways are dysregulated in autoimmune diseases. Therefore, calcineurin inhibitors, cyclosporine and tacrolimus, have been used for the treatment of such autoimmune diseases as systemic lupus erythematosus and rheumatoid arthritis. Here, we review the role of the Ca 2+-calcineurin-NFAT signaling pathway in health and diseases, focusing on the STIM and Orai1, and discuss the deregulated calcium-mediated calcineurin-NFAT pathway in autoimmune diseases. Keywords: calcium, calcineurin, nuclear factor of an activated T-cell, Ca 2+ signaling, autoimmune disease Park et al. Calcium Signaling and Autoimmune Disease TABLE 1 | Role of elevated intracellular calcium (Ca 2+) levels in various cells. Cell type Effects Endothelial cells Increase vasodilation Secretory cells Increase secretion, stimulate vesicle fusion Juxtaglomerular cells Decrease secretion Parathyroid chief cells Decrease secretion Neurons Stimulate transmission, vesicle fusion, and increase neural adaptation Myocytes Increase contraction and activation of protein kinase C
Serum amyloid A (SAA) is a major acute-phase reactant, and has been demonstrated to mediate proinflammatory cellular responses. Although SAA has been used as an indicator for a variety of inflammatory diseases, the role of SAA in synovial hyperplasia and proliferation of endothelial cells, a pathological hallmark of rheumatoid arthritis (RA), has yet to be elucidated. In this study, we have demonstrated that SAA promotes the proliferation of human fibroblast-like synoviocytes (FLS). In addition, SAA protects RA FLS against the apoptotic death induced by serum starvation, anti-Fas IgM, and sodium nitroprusside. The activity of SAA appears to be mediated by the formyl peptide receptor-like 1 (FPRL1) receptor, as it was mimicked by the WKYMVm peptide, a specific ligand for FPRL1, but completely abrogated by down-regulating the FPRL1 transcripts with short interfering RNA. The effect of SAA on FLS hyperplasia was shown to be caused by an increase in the levels of intracellular calcium, as well as the activation of ERK and Akt, which resulted in an elevation in the expression of cyclin D1 and Bcl-2. Moreover, SAA stimulated the proliferation, migration, and tube formation of endothelial cells in vitro, and enhanced the sprouting activity of endothelial cells ex vivo and neovascularization in vivo. These observations indicate that the binding of SAA to FPRL1 may contribute to the destruction of bone and cartilage via the promotion of synoviocyte hyperplasia and angiogenesis, thus providing a potential target for the control of RA.
Summary Mesenchymal stem cells (MSCs
Vascular endothelial growth factor (VEGF) has been suggested to play a critical role in the pathogenesis of rheumatoid arthritis (RA). We previously identified a novel RRKRRR hexapeptide that blocked the interaction between VEGF and its receptor through the screening of peptide libraries. In this study, we investigated whether anti-VEGF peptide RRKRRR (dRK6) could suppress collagen-induced arthritis (CIA) and regulate the activation of mononuclear cells of RA patients. A s.c. injection of dRK6 resulted in a dose-dependent decrease in the severity and incidence of CIA and suppressed synovial infiltration of inflammatory cells in DBA/1 mice. In these mice, the T cell responses to type II collagen (CII) in lymph node cells and circulating IgG Abs to CII were also dose-dependently inhibited by the peptides. In addition, VEGF directly increased the production of TNF-α and IL-6 from human PBMC. Synovial fluid mononuclear cells of RA patients showed a greater response to VEGF stimulation than the PBMC of healthy controls. The major cell types responding to VEGF were monocytes. Moreover, anti-VEGF dRK6 inhibited the VEGF-induced production of TNF-α and IL-6 from synovial fluid mononuclear cells of RA patients and decreased serum IL-6 levels in CIA mice. In summary, we observed first that dRK6 suppressed the ongoing paw inflammation in mice and blocked the VEGF-induced production of proinflammatory cytokines. These data suggest that dRK6 may be an effective strategy in the treatment of RA, and could be applied to modulate various chronic VEGF-dependent inflammatory diseases.
The ER chaperone GRP78/BiP is crucial for the development of rheumatoid arthritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.