Expression of the Drosophila cell adhesion molecule neuroglian in S2 cells leads to cell aggregation and the intracellular recruitment of ankyrin to cell contact sites. We localized the region of neuroglian that interacts with ankyrin and investigated the mechanism that limits this interaction to cell contact sites. Yeast two-hybrid analysis and expression of neuroglian deletion constructs in S2 cells identified a conserved 36-amino acid sequence that is required for ankyrin binding. Mutation of a conserved tyrosine residue within this region reduced ankyrin binding and extracellular adhesion. However, residual recruitment of ankyrin by this mutant neuroglian molecule was still limited to cell contacts, indicating that the lack of ankyrin binding at noncontact sites is not caused by tyrosine phosphorylation. A chimeric molecule, in which the extracellular domain of neuroglian was replaced with the corresponding domain from the adhesion molecule fasciclin II, also selectively recruited ankyrin to cell contacts. Thus, outside-in signaling by neuroglian in S2 cells depends on extracellular adhesion, but does not depend on any unique property of its extracellular domain. We propose that the recruitment of ankyrin to cell contact sites depends on a physical rearrangement of neuroglian in response to cell adhesion, and that ankyrin binding plays a reciprocal role in stabilizing the adhesive interaction.
This paper presents a method by which to design linear quadratic (LQ) static output feedback (SOF) controllers with a 2-DOF quarter-car model for an active suspension system. Generally, it is challenging to implement linear quadratic regulator (LQR), designed with a full-car model, in actual vehicles because doing so requires 14 state variables to be precisely measured. For this reason, LQR has been designed with a quarter-car model and then applied to a full-car model. Although this requires far fewer state variables, some of them are still difficult to measure. Thus, it is necessary to design a LQ SOF controller which uses available sensor signals that are relatively easily measured in real vehicles. In this paper, a LQ SOF controller is designed with a quarter-car model and applied to a full-car model for ride comfort. To design the controller, an optimization problem is formulated and solved by a heuristic optimization method. A frequency domain analysis and a simulation with a simulation package show that the proposed LQ SOF controllers effectively improve the ride comfort with an active suspension system.INDEX TERMS active suspension control, static output feedback control, 2-DOF quarter-car model, 7-DOF full-car model, linear quadratic regulator
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.