This study shows how to estimate AADT(Annual Average Daily Traffic) on temporary count data using new grouping method. This study deals with clustering permanent traffic counts using monthly adjustment factor, daily adjustment factor and a percentage of hourly volume. This study uses a percentage of hourly volume comparing with other studies. Cluster analysis is used and 5 groups is suitable. First, make average of monthly adjustment factor, average of daily adjustment factor, a percentage of hourly volume for each group. Next estimate AADT using 24 hour volume(not holiday) and two adjustment factors. Goodness of fit test is used to find what groups are applicable. MAPE(Mean Absolute Percentage Error) is 8.7% in this method. It is under 1.5% comparing with other method(using adjustment factors in same section). This method is better than other studies because it can apply all temporary counts data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.