Head loss in surcharged four-way junction manholes is a factor that increases damage due to urban inundation; thus, the flow characteristics of such manholes must be analyzed to reduce the head loss. In this study, a physical model was constructed; this model included a manhole and a connection pipe, fabricated on a 1/5 scale by applying sewer facility standards to perform a physical model investigation. Numerical simulations were performed using the Fluent model to derive efficient benching designs that can reduce head loss. Physical model investigations were performed by varying the ratio of the lateral influent flow rate to the effluent flow rate as well as by varying the effluent flow rate and benching designs. The result of physical model investigations showed that the installation of half rectangular benching reduced the head loss coefficients by 7% and 10% on average compared with square and circular manholes, respectively. The installation of full rectangular benching reduced the head loss coefficients by 28% and 17% on average compared with square and circular manholes, respectively. Thus, the benching proposed herein can be installed and used to improve the drainage capacity of urban stormwater conduit facilities.
Natural disaster has been hard to prevent the occurrence of itself, thus in order to reduce the economic damages and loss casualties, it is important to be prepared in cases that the disasters should occur in advance. Interest of the related project to prevent various natural disasters has been grown along with an investment in Korea. Along with this movement, when investments related to natural disaster prevention projects were built on, the post evaluation that can verify the ripple effects of those investments on the community should be emerging as an essential task. For evaluating the effects of public investment projects such as natural disaster prevention projects in this study, the related researches would continue through qualitative analyses, for example, cost-benefit analysis. Even the qualitative analysis alone cannot fully explain the effects of those projects, the diverse methods of analyzing and evaluating those effects might not have been presented in those fields. For the post evaluation of natural disaster prevention projects through the qualitative analysis, this study derived subjects that had effects on the post evaluation of natural disaster prevention projects. Also, employing the structural equation modeling (SEM), the causation between post evaluation subjects and the effects of projects were quantitatively analyzed, and the weighting factors of evaluation items were calculated respectively. Based on these results, post evaluation index formula was proposed for the natural disaster prevention projects in Korea.
In general, XP-SWMM regards manholes as nodes, so it can not consider local head loss in surcharged manhole depending on shape and size of the manhole. That might be a reason why XP-SWMM underestimates inundatedarea compared with reality. Therefore, it is necessary to study how we put the local head loss in surcharged manhole in order to simulate storm drain system with XP-SWMM. In this study, average head loss coefficients at circular and square manhole were estimated as 0.61 and 0.68 respectively through hydraulic experiments with various discharges. The estimated average head loss coefficients were put into XP-SWMM as inflow and outflow energy loss of nodes to simulate inundation area of Gunja basin. Simulated results show that not only overflow discharge amount but inundated-area increased considering the head loss coefficients. Also, inundation area with considering head loss coefficients was matched as much as 58% on real inundation area. That was more than simulated results without considering head loss coefficients as much as 18 %. Considering energy loss in surcharged manholes increases an accuracy of simulation. Therefore, the averaged head loss coefficients of this study could be used to simulate storm drain system. It was expected that the study results will be utilized as basic data for establishing the identification of the inundation risk area.
The grate inlets generally were installed to intercept surface runoff on the roads and intercepted flow was drained to the underground sewer system. The equation of interception flow was used to determine the size and spacing of grate inlet on the roads. Therefore, it is necessary to analyze the interception capacity of grate inlet. Hydraulic experimental apparatus which can be changed with the longitudinal slopes(2, 4, 6, 8, 10%) of street, the transverse slopes(2, 4, 7, 10%), and the lengths(50, 100, 150cm) of grate inlet was installed for this study. The range of the experimental discharges were calculated with change of road lanes(2, 3, 4) and design frequencies(5, 10, 20, 30year). As the transverse slope increased, it led to the increase of interception capacity at grate inlets. The long lengths of grate inlet with direction of flow increased the interception capacity by the increase of side inflow. On the basis of the hydraulic model experiment results, the empirical equations for calculation of the interception capacity were derived with regression analysis. As a result of comparison with equations, the suggested equation of this study was estimated reasonable one for increased design frequency. Therefore, this study can suggest the basic data for design of drainage facility at road.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.