A 3' terminal RNA uridylyltransferase was purified from mitochondria of Leishmania tarentolae and the gene cloned and expressed from this species and from Trypanosoma brucei. The enzyme is specific for 3' U-addition in the presence of Mg(2+). TUTase is present in vivo in at least two stable configurations: one contains a approximately 500 kDa TUTase oligomer and the other a approximately 700 kDa TUTase complex. Anti-TUTase antiserum specifically coprecipitates a small portion of the p45 and p50 RNA ligases and approximately 40% of the guide RNAs. Inhibition of TUTase expression in procyclic T. brucei by RNAi downregulates RNA editing and appears to affect parasite viability.
The cyclic interactions that occur between the subunits of the yeast mitochondrial RNA polymerase can serve as a simple model for the more complex enzymes in prokaryotes and the eukaryotic nucleus. We have used two-hybrid and fusion protein constructs to analyze the requirements for interaction between the single subunit core polymerase (Rpo41p), and the -like promoter specificity factor (Mtf1p). We were unable to define any protein truncations that retained the ability to interact, indicating that multiple regions encompassing the entire length of the proteins are involved in interactions. We found that 9 of 15 nonfunctional (petite) point mutations in Mtf1p isolated in a plasmid shuffle strategy had lost the ability to interact. Some of the noninteracting mutations are temperature-sensitive petite (ts petite); this phenotype correlates with a precipitous drop in mitochondrial transcript abundance when cells are shifted to the nonpermissive temperature. One temperature-sensitive mutant demonstrated a striking pH dependence for core binding in vitro, consistent with the physical properties of the amino acid substitution. The noninteracting mutations fall into three widely spaced clusters of amino acids. Two of the clusters are in regions with amino acid sequence similarity to conserved regions 2 and 3 of factors and related proteins; these regions have been implicated in core binding by both prokaryotic and eukaryotic -like factors. By modeling the location of the mutations using the partial structure of Escherichia coli 70, we find that two of the clusters are potentially juxtaposed in the three-dimensional structure. Our results demonstrate that interactions between -like specificity factors and core RNA polymerases require multiple regions from both components of the holoenzymes. The complex RNA polymerases of eukaryotes and prokaryotes require auxiliary factors specific for the initiation phase of transcription. These factors associate with the core polymerases to form holoenzymes competent for promoter recognition, selective DNA binding, and opening of the double-stranded DNA at the start site of transcription. Shortly after initiation, the factors are released as the RNA polymerase makes the transition into its elongating form. The factors associated with eukaryotic nuclear RNA polymerase II (Pol II) before initiation, and released shortly after transcription is initiated include TFIIB, TFIID, TFIIE, TFIIF, and TFIIH (Conaway and Conaway 1993;Zawel and Reinberg 1995). In bacterial cells, members of the family of factors carry out most of the functions of the many eukaryotic nuclear factors (for review, see Helmann 1994). The interaction of a factor with the core polymerase alters the conformation of both the polymerase and the factor to expose amino acids critical for promoter recognition, and to allow the loading of the polymerase onto the DNA (Dombroski et al. 1993;Polyakov et al. 1995). Although much has been learned about how factors and other sequence-specific binding factors interact with DNA, relati...
The yeast mitochondrial RNA polymerase (RNAP) is a two-subunit enzyme composed of a catalytic core (Rpo41) and a specificity factor (Mtf1) encoded by nuclear genes. Neither subunit on its own interacts with promoter DNA, but the combined holo-RNAP recognizes and selectively initiates from promoters related to the consensus sequence ATATAAGTA. To pursue the question of why Rpo41, which resembles the single polypeptide RNAPs from bacteriophage T7 and T3, requires a separate specificity factor, we analyzed a collection of Mtf1 point mutations that confer an in vivo petite phenotype. These mutant proteins are able to interact with Rpo41 and are capable of nearly wild type levels of initiation in vitro with a consensus promoter-containing template (14 S rRNA). However, the petite phenotype of two mutants can be explained by the fact that they exhibit dramatic transcriptional defects on non-consensus promoters. Y54F is incapable of transcribing the weak tRNA Cys promoter, and C192F cannot transcribe either tRNA Cys or the variant COX2 promoter from linear DNA templates. Transcription of the tRNA Cys promoter by both mutants was significantly corrected by addition of an initiating dinucleotide primer or by supercoiling the DNA template. These results establish the critical role of Mtf1 in promoter recognition and initiation of transcription.
Cold-adapted enzymes exhibit enhanced conformational flexibility, especially in their active sites, as compared with their warmer-temperature counterparts. However, the mechanism by which cold-adapted enzymes maintain their active site stability is largely unknown. In this study, we investigated the role of conserved D308-Y309 residues located in the same loop as the catalytic H307 residue in the cold-adapted esterase EstK from Pseudomonas mandelii. Mutation of D308 and/or Y309 to Ala or deletion resulted in increased conformational flexibility. Particularly, the D308A or Y309A mutant showed enhanced substrate affinity and catalytic rate, as compared with wild-type EstK, via enlargement of the active site. However, all mutant EstK enzymes exhibited reduced thermal stability. The effect of mutation was greater for D308 than Y309. These results indicate that D308 is not preferable for substrate selection and catalytic activity, whereas hydrogen bond formation involving D308 is critical for active site stabilization. Taken together, conformation of the EstK active site is constrained via flexibility-stability trade-off for enzyme catalysis and thermal stability. Our study provides further insights into active site stabilization of cold-adapted enzymes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.