Arf GTPases regulate both the morphological and protein sorting events that are essential for membrane trafficking. Guanine nucleotide exchange factors (GEFs) specific for Arf proteins determine when and where Arf GTPases will be activated in cells. The yeast Gea2p Arf GEF is a member of an evolutionarily conserved family of high molecular mass Arf GEFs that are peripherally associated with membranes. Nothing is known about how these proteins are localized to membranes, and few direct binding partners have been identified. In yeast, Gea2p has been implicated in trafficking through the Golgi apparatus and in maintaining Golgi structure. A major function of the Golgi apparatus is the packaging of cargo into secretory granules or vesicles. This process occurs through a series of membrane transformation events starting with fenestration of a saccular membrane, and subsequent remodeling of the fenestrated membrane into a mesh-like tubular network. Concentration of secretory cargo into nodes of the tubular network leads to enlargement of the nodes, which correspond to forming vesicles/granules, and thinning of the surrounding tubules. The tubules eventually break to release the secretory vesicles/granules into the cytoplasm. This process is highly conserved at the morphological level from yeast to mammalian cells. Drs2p, a multi-span transmembrane domain protein and putative aminophospholipid translocase, is required for the formation of a class of secretory granules/vesicles in yeast. Here we show that Drs2p interacts directly with Gea2p, both in vitro and in vivo. We mapped the domain of interaction of Drs2p to a 20-amino-acid region of the C-terminal cytoplasmic tail of the protein, adjacent to a region essential for Drs2p function. Mutations in Gea2p that abolish interaction with Drs2p are clustered in the C-terminal third of the Sec7 domain, and are important for Gea2p function. We characterize one such mutant that has a thermosensitive phenotype, and show that it has morphological defects along the secretory pathway in the formation of secretory granules/vesicles.
We have identified an important functional region of the yeast Arf1 activator Gea2p upstream of the catalytic Sec7 domain and characterized a set of temperature-sensitive (ts) mutants with amino acid substitutions in this region. These gea2-ts mutants block or slow transport of proteins traversing the secretory pathway at exit from the endoplasmic reticulum (ER) and the early Golgi, and accumulate both ER and early Golgi membranes. No defects in two types of retrograde trafficking/sorting assays were observed. We find that a substantial amount of COPI is associated with Golgi membranes in the gea2-ts mutants, even after prolonged incubation at the nonpermissive temperature. COPI in these mutants is released from Golgi membranes by brefeldin A, a drug that binds directly to Gea2p and blocks Arf1 activation. Our results demonstrate that COPI function in sorting of at least three retrograde cargo proteins within the Golgi is not perturbed in these mutants, but that forward transport is severely inhibited. Hence this region of Gea2p upstream of the Sec7 domain plays a role in anterograde transport that is independent of its role in recruiting COPI for retrograde transport, at least of a subset of Golgi-ER cargo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.