In electric railway systems, wear of current collector devices leads to high maintenance cost. To develop a cost reduction methodology, the wear behavior of current collector materials needs to be fully investigated. However, the wear test apparatuses currently in use cannot control the contact force between materials, and the contact force fluctuates. It is difficult to classify accurate conditions of a wear transition under contact force fluctuation. To solve this problem, we propose a force control system with acceleration and velocity feedbacks to suppress the force fluctuation. The positive feedback of acceleration compensates the periodic force fluctuation at frequencies according to the sliding velocity of rubbing surfaces. The velocity feedback compensates the force fluctuation caused by resonance. The proposed control system is validated by experiments using a prototype of a rotary wear test apparatus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.