Generating large synthetic attributed graphs with node labels is an important task to support various experimental studies for graph analysis methods. Existing graph generators fail to simultaneously simulate the relationships between labels, attributes, and topology which real-world graphs exhibit. Motivated by this limitation, we propose GenCAT, an attributed graph generator for controlling those relationships, which has the following advantages. (i) GenCAT generates graphs with user-specified node degrees and flexibly controls the relationship between nodes and labels by incorporating the connection proportion for each node to classes. (ii) Generated attribute values follow user-specified distributions, and users can flexibly control the correlation between the attributes and labels. (iii) Graph generation scales linearly to the number of edges. GenCAT is the first generator to support all three of these practical features. Through extensive experiments, we demonstrate that GenCAT can efficiently generate high-quality complex attributed graphs with user-controlled relationships between labels, attributes, and topology.
Graph Neural Networks (GNNs) have achieved great success on a node classification task. Despite the broad interest in developing and evaluating GNNs, they have been assessed with limited benchmark datasets. As a result, the existing evaluation of GNNs lacks fine-grained analysis from various characteristics of graphs. Motivated by this, we conduct extensive experiments with a synthetic graph generator that can generate graphs having controlled characteristics for fine-grained analysis. Our empirical studies clarify the strengths and weaknesses of GNNs from four major characteristics of real-world graphs with class labels of nodes, i.e., 1) class size distributions (balanced vs. imbalanced), 2) edge connection proportions between classes (homophilic vs. heterophilic), 3) attribute values (biased vs. random), and 4) graph sizes (small vs. large). In addition, to foster future research on GNNs, we publicly release our codebase that allows users to evaluate various GNNs with various graphs. We hope this work offers interesting insights for future research.Preprint. Under review.
We consider the clustering problem of attributed graphs. Our challenge is how we design an effective clustering method that captures the complicated relationship between the topology and the attributes in real-world graphs. We propose NAGC, a new attributed graph clustering method that bridges the attribute space and the topology space. The feature of NAGC is two-hold. 1) NAGC learns a projection function between the topology space and the attribute space so as to capture their complicated relationship, and 2) NAGC leverages the positive unlabeled learning to take the effect of partially observed positive edges into the cluster assignment. We conducted experiments extensively to validate that NAGC performs higher than or comparable to prior arts regarding the clustering quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.