These results suggest that chronic treatment with p38 MAPK and JNK inhibitors produces opposing effects on the development of heart failure in the DCM hamster heart.
We investigated the mechanism of exercise-induced late cardioprotection against ischemia-reperfusion (I/R) injury. C57BL/6 mice received treadmill exercise (60 min/day) for 7 days at a work rate of 60-70% maximal oxygen uptake. Exercise transiently increased oxidative stress and activated endothelial isoform of nitric oxide synthase (eNOS) during exercise and increased expression of inducible isoform of NOS (iNOS) in the heart after 7 days of exercise. The mice were subjected to regional ischemia by 30 min of occlusion of the left coronary artery, followed by 2 h of reperfusion. Infarct size was significantly smaller in the exercised mice. Ablation of cardiac sympathetic nerve by topical application of phenol abolished oxidative stress, activation of eNOS, upregulation of iNOS, and cardioprotection mediated by exercise. Treatment with the antioxidant N-(2-mercaptopropionyl)-glycine during exercise also inhibited activation of eNOS, upregulation of iNOS, and cardioprotection. In eNOS(-/-) mice, exercise-induced oxidative stress was conserved, but upregulation of iNOS and cardioprotection was lost. Exercise did not confer cardioprotection when the iNOS selective inhibitor 1400W was administered just before coronary artery occlusion or when iNOS(-/-) mice were employed. These results suggest that exercise stimulates cardiac sympathetic nerves that provoke redox-sensitive activation of eNOS, leading to upregulation of iNOS, which acts as a mediator of late cardioprotection against I/R injury.
Oxidative stress mediated by activation of angiotensin II type-1 receptor (AT(1)R) plays a crucial role in the progression of heart failure. We investigated the effect of N-acetylcysteine (NAC) and an AT(1)R blocker on oxidative stress and left ventricular (LV) remodeling in BIO14.6 cardiomyopathy hamsters. The cardiomyopathy hamsters were treated with NAC or the AT(1)R blocker losartan for 20 weeks. Although NAC and losartan inhibited oxidative stress and upregulation of iNOS in the cardiomyopathy hamster heart, only losartan inhibited LV chamber dilation, myocardial fibrosis, and LV dysfunction in the cardiomyopathy hamster. Co-treatment with NAC abolished the protective effect of losartan against LV remodeling associated with inhibition of phosphatidylinositol 3-kinase (PI3K)/Akt and eNOS activation. An iNOS inhibitor 1400W or a nonselective NOS inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME) exacerbated LV remodeling in the cardiomyopathy hamster. However, L-NAME but not 1400W abrogated losartan-mediated inhibition of LV remodeling. These results suggest that redox-sensitive upregulation of iNOS plays a crucial role in preventing LV remodeling in the BIO14.6 cardiomyopathy hamster. Losartan inhibits LV remodeling by switching the cardioprotective mechanism from iNOS- to eNOS-dependence, but NAC abolishes the protective effect of losartan by inhibiting redox-sensitive activation of PI3K/Akt and eNOS in the cardiomyopathy hamster.
These results suggest that enhanced relocalization of dystrophin to the sarcolemma during reperfusion may be a mechanistic link between IPC-mediated improvement of mitochondrial function and its protection against oncosis during the early phase of reperfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.