Improving ski-turn skills is of interest to both competitive and recreational skiers, but it is not easy to improve on one’s own. Although studies have reported various methods of ski-turn skill evaluation, a simple method that can be used by oneself has not yet been established. In this study, we have proposed a comfortable method to assess ski-turn skills; this method enables skiers to easily understand the relationship between body control and ski motion. One expert skier and four intermediate skiers participated in this study. Small inertial measurement units (IMUs) and mobile plantar pressure distribution sensors were used to capture data while skiing, and three ski-turn features—ski motion, waist rotation, and how load is applied to the skis—as well as their symmetry, were assessed. The results showed that the motions of skiing and the waist in the expert skier were significantly larger than those in intermediate skiers. Additionally, we found that the expert skier only slightly used the heel to apply a load to the skis (heel load ratio: approximately 60%) and made more symmetrical turns than the intermediate skiers did. This study will provide a method for recreational skiers, in particular, to conveniently and quantitatively evaluate their ski-turn skills by themselves.
Elite athletes achieve superior performance under high pressure in competitive situations. Although it is known that such situations affect the precompetitive activity of their autonomic nervous system (ANS), the relationship between precompetitive ANS activity and performance remains controversial. Especially in extreme sports, it has been shown that cardiac sympathetic tone occurs in athletes before competition attempts. However, the relationship between precompetitive sympathetic tone and performance is unclear. To investigate this relationship in extreme sports, we organized a freestyle snowboard jumping competition and examined competitors' physiological states and performance during this event. The electrocardiograms (ECGs) of 20 elite snowboarders were measured 10 min before each jump in different competitive situations: practice, qualifying, and final sessions. The mean heart rate (HR), the low-frequency to high-frequency component ratio (LF/HF ratio), the logarithm of the HF (lnHF) component of the frequency-domain of the heart rate variability (HRV), the ratio of the standard deviation of all R–R intervals to the root mean square of successive differences of R–R intervals (SDNN/rMSSD ratio), and the rMSSD of the time-domain of the HRV were calculated from the ECG data. The results showed a significant increase in the mean HR as well as significant decreases in the lnHF component and rMSSD of the HRV as the sessions progressed. Interestingly, the mean HR, LF/HF ratio and SDNN/rMSSD ratio of the HRV showed significant positive correlations with competitive scores, and the lnHF component and rMSSD of the HRV showed significant negative correlations with the scores. Our results indicate that precompetitive ANS activity becomes predominantly sympathetic in elite extreme athletes, such as freestyle snowboarders, when the competition intensifies, and that this sympathetic predominance is positively related to competitive performance.
Skiers need a convenient method that uses actual ski-turn data to determine their skill level quantitatively without impeding their movement. In this study, we propose a feature detection method designed to quantitatively assess the skill level involved in ski turns. Actual data were acquired from both expert and intermediate skiers while skiing by using a comfortable measurement system that uses compact inertial sensors attached to the user’s skis and waist, and plantar pressure sensors. The changes in body posture and the behavior of the skis were examined using acceleration and angular velocity (each on three axes) data output by the inertial sensors. The plantar pressure distributions generated during skiing were also examined. The results show that it is possible to detect the relationship between the behavior of the skis and the changes in body posture or the plantar pressure distribution, which allows the skier’s skill level to be quantitatively assessed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.