Effect of rare-earth elements (Y and Dy) on the mechanical properties of Mg solid solution single crystal is investigated. Comparing with the effect of other elements reported by previous studies, the solid solution strengthening by Y and Dy are much higher than that of other additives such as Zn for basal slip operation, while the isotropic strain by Zn atoms is higher than those of Y and Dy. Strain-rate changing tests were conducted for a further understanding of the dislocation motion and it revealed that the activation volumes estimated for Mg alloys with Y and Dy are much smaller than that of Zn-added alloy, while the activation enthalpy is almost the same. It was confirmed that the high strengthening effect by Dy addition is also found by Y addition, while the elastic interaction based on neither isotropic or anisotropic distortion are sufficient to explain the origin of the strengthening effect by Y and Dy addition.
Mechanical properties of L1 2 -Co 3 (Al,W) polycrystalline sample are investigated by compression testing at various temperature ranging from room temperature to 1193 K. It was found that at room temperature the 0.2% flow stress is 410 MPa and the compressive ductility is higher than 10%, whereas at 1193 K the 0.2% flow stress is 382 MPa and the compressive ductility is about 10%. Two candidates for the reaction scheme of the Co-rich region of the Co-Al-W ternary phase diagram are proposed by combining the results of microstructure observation, X-ray diffractometry and the previous report.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.