Transport networks are ubiquitous in both social and biological systems. Robust network performance involves a complex trade-off involving cost, transport efficiency, and fault tolerance. Biological networks have been honed by many cycles of evolutionary selection pressure and are likely to yield reasonable solutions to such combinatorial optimization problems. Furthermore, they develop without centralized control and may represent a readily scalable solution for growing networks in general. We show that the slime mold Physarum polycephalum forms networks with comparable efficiency, fault tolerance, and cost to those of real-world infrastructure networks--in this case, the Tokyo rail system. The core mechanisms needed for adaptive network formation can be captured in a biologically inspired mathematical model that may be useful to guide network construction in other domains.
Immune attacks are key issues for cell transplantation. To assess the safety and the immune reactions after iPS cells-derived retinal pigment epithelium (iPS-RPE) transplantation, we transplanted HLA homozygote iPS-RPE cells established at an iPS bank in HLA-matched patients with exudative age-related macular degeneration. In addition, local steroids without immunosuppressive medications were administered. We monitored immune rejections by routine ocular examinations as well as by lymphocytes-graft cells immune reaction (LGIR) tests using graft RPE and the patient’s blood cells. In all five of the cases that underwent iPS-RPE transplantation, the presence of graft cells was indicated by clumps or an area of increased pigmentation at 6 months, which became stable with no further abnormal growth in the graft during the 1-year observation period. Adverse events observed included corneal erosion, epiretinal membrane, retinal edema due to epiretinal membrane, elevated intraocular pressure, endophthalmitis, and mild immune rejection in the eye. In the one case exhibiting positive LGIR tests along with a slight fluid recurrence, we administrated local steroid therapy that subsequently resolved the suspected immune attacks. Although the cell delivery strategy must be further optimized, the present results suggest that it is possible to achieve stable survival and safety of iPS-RPE cell transplantation for a year.
We investigate how an amoeba mechanically moves its own center of gravity using the model organism Physarum plasmodium. Time-dependent velocity fields of protoplasmic streaming over the whole plasmodia were measured with a particle image velocimetry program developed for this work. Combining these data with measurements of the simultaneous movements of the plasmodia revealed a simple physical mechanism of locomotion. The shuttle streaming of the protoplasm was not truly symmetric due to the peristalsis-like movements of the plasmodium. This asymmetry meant that the transport capacity of the stream was not equal in both directions, and a net forward displacement of the center of gravity resulted. The generality of this as a mechanism for amoeboid locomotion is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.