We reevaluate the absolute fluorescence and phosphorescence quantum yields of standard solutions by using a novel instrument developed for measuring the absolute emission quantum yields of solutions. The instrument consists of an integrating sphere equipped with a monochromatized Xe arc lamp as the light source and a multichannel spectrometer. By using a back-thinned CCD (BT-CCD) as the detector, the sensitivity for spectral detection in both the short and long wavelength regions is greatly improved compared with that of an optical detection system that uses a conventional photodetector. Using this instrument, we reevaluate the absolute fluorescence quantum yields (Phi(f)) of some commonly used fluorescence standard solutions by taking into account the effect of reabsorption/reemission. The value of Phi(f) for 5 x 10(-3) M quinine bisulfate in 1 N H(2)SO(4) is measured to be 0.52, which is in good agreement with the value (0.508) obtained by Melhuish by using a modified Vavilov method. In contrast, the value of Phi(f) for 1.0 x 10(-5) M quinine bisulfate in 1 N H(2)SO(4), which is one of the most commonly used standards in quantum yield measurements based on the relative method, is measured to be 0.60. This value is significantly larger than Melhuish's value (0.546), which was estimated by extrapolating the value of Phi(f) for 5 x 10(-3) M quinine bisulfate solution to infinite dilution using the self-quenching constant. The fluorescence quantum yield of 9,10-diphenylanthracene in cyclohexane is measured to be 0.97. This system can also be used to determine the phosphorescence quantum yields (Phi(p)) of metal complexes that emit phosphorescence in the near-infrared region: the values of Phi(p) for [Ru(bpy)(3)](2+) (bpy = 2,2'-bipyridine) are estimated to be 0.063 in water and 0.095 in acetonitrile under deaerated conditions at 298 K, while that in aerated water, which is frequently used as a luminescent reference in biological studies, is reevaluated to be 0.040.
Single-molecule localization microscopy is used to construct super-resolution images, but generally requires prior intense laser irradiation and in some cases additives, such as thiols, to induce on-off switching of fluorophores. These requirements limit the potential applications of this methodology. Here, we report a first-in-class spontaneously blinking fluorophore based on an intramolecular spirocyclization reaction. Optimization of the intramolecular nucleophile and rhodamine-based fluorophore (electrophile) provide a suitable lifetime for the fluorescent open form, and equilibrium between the open form and the non-fluorescent closed form. We show that this spontaneously blinking fluorophore is suitable for single-molecule localization microscopy imaging deep inside cells and for tracking the motion of structures in living cells. We further demonstrate the advantages of this fluorophore over existing methodologies by applying it to nuclear pore structures located far above the coverslip with a spinning-disk confocal microscope and for repetitive time-lapse super-resolution imaging of microtubules in live cells for up to 1 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.