The spiking neural networks (SNNs) are considered as one of the most promising artificial neural networks due to their energyefficient computing capability. Recently, conversion of a trained deep neural network to an SNN has improved the accuracy of deep SNNs. However, most of the previous studies have not achieved satisfactory results in terms of inference speed and energy efficiency. In this paper, we propose a fast and energy-efficient information transmission method with burst spikes and hybrid neural coding scheme in deep SNNs. Our experimental results showed the proposed methods can improve inference energy efficiency and shorten the latency.
The tremendous energy consumption of deep neural networks (DNNs) has become a serious problem in deep learning. Spiking neural networks (SNNs), which mimic the operations in the human brain, have been studied as prominent energy-efficient neural networks. Due to their event-driven and spatiotemporally sparse operations, SNNs show possibilities for energy-efficient processing. To unlock their potential, deep SNNs have adopted temporal coding such as time-to-first-spike (TTFS) coding, which represents the information between neurons by the first spike time. With TTFS coding, each neuron generates one spike at most, which leads to a significant improvement in energy efficiency. Several studies have successfully introduced TTFS coding in deep SNNs, but they showed restricted efficiency improvement owing to the lack of consideration for efficiency during training. To address the aforementioned issue, this paper presents training methods for energyefficient deep SNNs with TTFS coding. We introduce a surrogate DNN model to train the deep SNN in a feasible time and analyze the effect of the temporal kernel on training performance and efficiency. Based on the investigation, we propose stochastically relaxed activation and initial value-based regularization for the temporal kernel parameters. In addition, to reduce the number of spikes even further, we present temporal kernel-aware batch normalization. With the proposed methods, we could achieve comparable training results with significantly reduced spikes, which could lead to energy-efficient deep SNNs.
Over the past decade, deep neural networks (DNNs) have demonstrated remarkable performance in a variety of applications. As we try to solve more advanced problems, increasing demands for computing and power resources has become inevitable. Spiking neural networks (SNNs) have attracted widespread interest as the third-generation of neural networks due to their event-driven and low-powered nature. SNNs, however, are difficult to train, mainly owing to their complex dynamics of neurons and non-differentiable spike operations. Furthermore, their applications have been limited to relatively simple tasks such as image classification. In this study, we investigate the performance degradation of SNNs in a more challenging regression problem (i.e., object detection). Through our in-depth analysis, we introduce two novel methods: channel-wise normalization and signed neuron with imbalanced threshold, both of which provide fast and accurate information transmission for deep SNNs. Consequently, we present a first spiked-based object detection model, called Spiking-YOLO. Our experiments show that Spiking-YOLO achieves remarkable results that are comparable (up to 98%) to those of Tiny YOLO on non-trivial datasets, PASCAL VOC and MS COCO. Furthermore, Spiking-YOLO on a neuromorphic chip consumes approximately 280 times less energy than Tiny YOLO and converges 2.3 to 4 times faster than previous SNN conversion methods.
Spiking neural networks (SNNs) have gained considerable interest due to their energy-efficient characteristics, yet lack of a scalable training algorithm has restricted their applicability in practical machine learning problems. The deep neural network-to-SNN conversion approach has been widely studied to broaden the applicability of SNNs. Most previous studies, however, have not fully utilized spatio-temporal aspects of SNNs, which has led to inefficiency in terms of number of spikes and inference latency. In this paper, we present T2FSNN, which introduces the concept of time-to-first-spike coding into deep SNNs using the kernel-based dynamic threshold and dendrite to overcome the aforementioned drawback. In addition, we propose gradient-based optimization and early firing methods to further increase the efficiency of the T2FSNN. According to our results, the proposed methods can reduce inference latency and number of spikes to 22% and less than 1%, compared to those of burst coding, which is the state-of-the-art result on the CIFAR-100.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.