Identifying the downstream effects of disease-associated single nucleotide polymorphisms (SNPs) is challenging: the causal gene is often unknown or it is unclear how the SNP affects the causal gene, making it difficult to design experiments that reveal functional consequences. To help overcome this problem, we performed the largest expression quantitative trait locus (eQTL) meta-analysis so far reported in non-transformed peripheral blood samples of 5,311 individuals, with replication in 2,775 individuals. We identified and replicated trans-eQTLs for 233 SNPs (reflecting 103 independent loci) that were previously associated with complex traits at genome-wide significance. Although we did not study specific patient cohorts, we identified trait-associated SNPs that affect multiple trans-genes that are known to be markedly altered in patients: for example, systemic lupus erythematosus (SLE) SNP rs49170141 altered C1QB and five type 1 interferon response genes, both hallmarks of SLE2-4. Subsequent ChIP-seq data analysis on these trans-genes implicated transcription factor IKZF1 as the causal gene at this locus, with DeepSAGE RNA-sequencing revealing that rs4917014 strongly alters 3’ UTR levels of IKZF1. Variants associated with cholesterol metabolism and type 1 diabetes showed similar phenomena, indicating that large-scale eQTL mapping provides insight into the downstream effects of many trait-associated variants.
To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying contextspecific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.Inappropriate immune activity and associated inflammation are involved in the pathogenesis of a broad range of common diseases including inflammatory bowel disease, atherosclerosis, rheumatoid arthritis, and cancer. Moreover, a significant proportion of common disease risk loci identified with genome-wide association studies (GWAS) implicate immune genes (1). Most GWAS loci consist of single-nucleotide polymorphisms (SNPs) within noncoding, putatively regulatory DNA, often at a distance from any gene coding regions (2). The identification of functional regulatory variants and associated modulated genes is key to interpreting GWAS findings and establishing how genes are associated with disease. This can be explored by mapping gene expression as a quantitative trait (eQTL mapping) (3-6).
Trans-acting genetic variants play a substantial, albeit poorly characterized, role in the heritable determination of gene expression. Using paired purified primary monocytes and B-cells we identify novel, predominantly cell-specific, cis- and trans-eQTL (expression quantitative trait loci). These include multi-locus trans-associations to LYZ in monocytes and to KLF4 in B-cells. Additionally, we observe B-cell specific trans-association of rs11171739 at 12q13.2, a known autoimmune disease locus, to IP6K2 (pB-cell=5.8×10−15), PRIC285 (pB-cell=3.0×10−10) and an upstream region of CDKN1A (pB-cell=2×10−52; pmonocyte=1.8×10−4), suggesting roles for cell cycle regulation and PPARγ signaling in disease pathogenesis. We also find specific HLA alleles forming trans-association with the expression of AOAH and ARHGAP24 in monocytes but not in B-cells. In summary, we demonstrate that mapping gene expression in defined primary cell populations identifies new cell-specific trans-regulated networks and provides insights into the genetic basis of disease susceptibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.