The collapse of the Fukushima Dai-ichi Nuclear Power Plant caused a massive release of radioactive materials to the environment. A prompt and reliable system for evaluating the biological impacts of this accident on animals has not been available. Here we show that the accident caused physiological and genetic damage to the pale grass blue Zizeeria maha, a common lycaenid butterfly in Japan. We collected the first-voltine adults in the Fukushima area in May 2011, some of which showed relatively mild abnormalities. The F1 offspring from the first-voltine females showed more severe abnormalities, which were inherited by the F2 generation. Adult butterflies collected in September 2011 showed more severe abnormalities than those collected in May. Similar abnormalities were experimentally reproduced in individuals from a non-contaminated area by external and internal low-dose exposures. We conclude that artificial radionuclides from the Fukushima Nuclear Power Plant caused physiological and genetic damage to this species.
BackgroundOn August 9th 2012, we published an original research article in Scientific Reports, concluding that artificial radionuclides released from the Fukushima Dai-ichi Nuclear Power Plant exerted genetically and physiologically adverse effects on the pale grass blue butterfly Zizeeria maha in the Fukushima area. Immediately following publication, many questions and comments were generated from all over the world. Here, we have clarified points made in the original paper and answered questions posed by the readers.ResultsThe following points were clarified. (1) There are many advantages to using the pale grass blue butterfly as an indicator species. (2) The forewings of the individuals collected in Fukushima were significantly smaller than in the northern and southern localities. (3) We observed growth retardation in the butterflies from the Fukushima area. (4) The aberrant colour patterns in the butterflies obtained in the Fukushima area were different from the colour patterns induced by temperature and sibling crosses but similar to those induced by external and internal exposures to the artificial radionuclides and by a chemical mutagen, suggesting that genetic mutations caused the aberrations. (5) This species of butterfly has been plentiful in Fukushima area for at least half a century. We here present specimens collected from Fukushima Prefecture before the accident. (6) Mutation accumulation was detected by the increase in the abnormality rates from May 2011 to September 2011. (7) The abnormal traits were heritable. (8) Our sampling localities were not affected by the tsunami. (9) We used a high enough number of samples to obtain statistically significant results. (10) The standard rearing method was followed, producing normal adults in the control groups. (11) The exposure experiments successfully reproduced the results of the field work. This species of butterfly is vulnerable to long-term low-dose internal and external exposures; however, insect cells are known to be resistant to short-term high-dose irradiation. This discrepancy is reconcilable based on the differences in the experimental conditions.ConclusionsWe are just beginning to understand the biological effects of long-term low-dose exposures in animals. Further research is necessary to accurately assess the possible biological effects of the accident.
BackgroundLong-term monitoring of the biological impacts of the radioactive pollution caused by the Fukushima nuclear accident in March 2011 is required to understand what has occurred in organisms living in the polluted areas. Here, we investigated spatial and temporal changes of the abnormality rate (AR) in both field-caught adult populations and laboratory-reared offspring populations of the pale grass blue butterfly, Zizeeria maha, which has generation time of approximately one month. We monitored 7 localities (Fukushima, Motomiya, Hirono, Iwaki, Takahagi, Mito, and Tsukuba) every spring and fall over 3 years (2011–2013).ResultsThe adult ARs of these localities quickly increased and peaked in the fall of 2011, which was not observed in non-contaminated localities. In the offspring generation, the total ARs, which include deaths at the larval, prepupal, and pupal stages and morphological abnormalities at the adult stage, peaked either in the fall of 2011 or in the spring of 2012, with much higher levels than those of the parent field populations, suggesting that high incidence of deaths and abnormalities might have occurred in the field populations. Importantly, the elevated ARs of the field and offspring populations settled back to a normal level by the fall of 2012 and by the spring of 2013, respectively. Similar results were obtained not only in the spatiotemporal dynamics of the number of individuals caught per minute but also in the temporal dynamics of the correlation coefficient between the adult abnormality rate and the ground radiation dose or the distance from the Power Plant.ConclusionsThese results demonstrated an occurrence and an accumulation of adverse physiological and genetic effects in early generations, followed by their decrease and leveling off at a normal level, providing the most comprehensive record of biological dynamics after a nuclear accident available today. This study also indicates the importance of considering generation time and adaptive evolution in evaluating the biological impacts of artificial pollution in wild organisms.Electronic supplementary materialThe online version of this article (doi:10.1186/s12862-015-0297-1) contains supplementary material, which is available to authorized users.
Butterfly wing color patterns are highly complex and diverse, but they are believed to be derived from the nymphalid groundplan, which is composed of several color pattern systems. Among these pattern systems, the marginal band system, including marginal and submarginal bands, has rarely been studied. Here, we examined the color pattern diversity of the marginal band system among nymphalid butterflies. Marginal and submarginal bands are usually expressed as a pair of linear bands aligned with the wing margin. However, a submarginal band can be expressed as a broken band, an elongated oval, or a single dot. The marginal focus, usually a white dot at the middle of a wing compartment along the wing edge, corresponds to the pupal edge spot, one of the pupal cuticle spots that signify the locations of color pattern organizing centers. A marginal band can be expressed as a semicircle, an elongated oval, or a pair of eyespot-like structures, which suggest the organizing activity of the marginal focus. Physical damage at the pupal edge spot leads to distal dislocation of the submarginal band in Junonia almana and in Vanessa indica, suggesting that the marginal focus functions as an organizing center for the marginal band system. Taken together, we conclude that the marginal band system is developmentally equivalent to other symmetry systems. Additionally, the marginal band is likely a core element and the submarginal band a paracore element of the marginal band system, and both bands are primarily specified by the marginal focus organizing center.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.