We have measured the shift and width of the kaonic hydrogen 1s state due to the KN strong interaction. We have observed, for the first time, distinct K-series kaonic hydrogen x rays with good signal-to-noise ratio in the energy spectrum. The measured energy shift and width were determined to be DE͑1s͒ 2323 6 63͑stat͒ 6 11͑syst͒ eV (repulsive) and G͑1s͒ 407 6 208͑stat͒ 6 100͑syst͒ eV, respectively. [S0031-9007(97)02992-X] PACS numbers: 13.75. Jz, 25.80.Nv, 29.30.Kv, 36.10.Gv The determination of the strong-interaction energy level shift and width of the kaonic hydrogen x rays is one of the most important subjects for the understanding of the KN interaction. It is strongly affected by the presence of the L͑1405͒ subthreshold resonance. The study of the KN interaction is also relevant to the important question of K 2 condensation in dense matter [1,2].The observation of the shift and width of the kaonic hydrogen K a ͑2p ! 1s͒ x rays gives direct information about the KN s-wave interaction at the K 2 p threshold energy in a fairly model independent way [3]. The status of the study was quite puzzling due to the contradiction between the signs of the scattering lengths obtained by the previous x-ray measurements [4-6] and those extracted from the analyses of the low energy KN data, e.g., , as shown in Fig. 1. This contradiction is known to be almost impossible to reconcile within the conventional theoretical framework. Moreover, the x-ray signals of the previous experiments are very difficult to identify in their spectra. Therefore, a definitive experiment has been long awaited.We accumulated data for 760 hours at KEK-PS K3. A detailed description of our experimental setup is given in a separate paper [10]. Here we present a short summary.Optimization of the target density is quite important for this experiment. As a compromise between kaon stopping yield and kaon loss during the atomic cascade due to the Stark effect, we chose to operate the hydrogen FIG. 1. The energy shift and width of 1s state. One-standarddeviation region of shift and width of the previous experiments are plotted together with theoretical calculations. The present result is shown in bold.
A report is made on a comprehensive observation of a burstlike gamma-ray emission from thunderclouds on the Sea of Japan, during strong thunderstorms on 6 January 2007. The detected emission, lasting for approximately 40 sec, preceded cloud-to-ground lightning discharges. The burst spectrum, extending to 10 MeV, can be interpreted as consisting of bremsstrahlung photons originating from relativistic electrons. This ground-based observation provides the first clear evidence that strong electric fields in thunderclouds can continuously accelerate electrons beyond 10 MeV prior to lightning discharges.
Delayed annihilation of antiprotons stopped in liquid helium has been observed, revealing that about 3.6% of stopped antiprotons are trapped in long-lived metastable states. No delayed component was found either in liquid nitrogen or in liquid argon. The observed time distribution of delayed annihilation shows fast-decaying components followed by a major part with a decay time constant of 3 ^sec.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.