Limited presence of nodal and line meters in distribution grids hinders their optimal operation and participation in real-time markets. In particular lack of real-time information on the grid topology and infrequently calibrated line parameters (impedances) adversely affect the accuracy of any operational power flow control. This paper suggests a novel algorithm for learning the topology of distribution grid and estimating impedances of the operational lines with minimal observational requirements -it provably reconstructs topology and impedances using voltage and injection measured only at the terminal (enduser) nodes of the distribution grid. All other (intermediate) nodes in the network may be unobserved/hidden. Furthermore no additional input (e.g., number of grid nodes, historical information on injections at hidden nodes) is needed for the learning to succeed. Performance of the algorithm is illustrated in numerical experiments on the IEEE and custom power distribution models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.