Building a controllable neural conversation model (NCM) is an important task. In this paper, we focus on controlling the responses of NCMs by using dialogue act labels of responses as conditions. We introduce an adversarial learning framework for the task of generating conditional responses with a new objective to a discriminator, which explicitly distinguishes sentences by using labels. This change strongly encourages the generation of label-conditioned sentences. We compared the proposed method with some existing methods for generating conditional responses. The experimental results show that our proposed method has higher controllability for dialogue acts even though it has higher or comparable naturalness to existing methods.
The synchronization of words in conversation, called entrainment, is generally observed in human-human conversations. Entrainment has a high correlation with dialogue success, naturalness, and engagement. In this paper, we define entrainment scores based on the word similarities in semantic space to evaluate the entrainment of system generation. We optimized a neural conversation model to the entrainment scores using reinforcement learning so that the system can control the degree of entrainment of the system response. Experimental results showed that the proposed entrainable neural conversation model generated comparable or more natural responses than conventional models and satisfactorily controlled the degree of entrainment of the generated responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.