Colloidal crystals composed of mesoporous silica nanoparticles (MSNs) are expected to have various applications because of their unique hierarchical structures and tunable functions. The expansion of the mesopore size is important for introducing guest species which cannot be accommodated by using conventional colloidal crystals of MSNs; however, the preparation of MSNs with a controllable pore size, suitable for the fabrication of colloidal crystals, still remains a challenge. In this study, we fabricated colloidal crystals composed of pore-expanded MSNs using a sophisticated particle growth method to control the pore size of colloidal MSNs while retaining their monodispersity high enough to form colloidal crystals. By adding triisopropylbenzene (TIPB) only during the growth process with the stepwise addition of tetrapropoxysilane (TPOS), the particle size can be tuned from 60 nm to 100 nm, while the pore size can be tuned from 3 nm to ten plus several nm which is the largest size among the previous MSNs capable of forming colloidal crystals. These novel colloidal crystals should contribute to the expansion of nanomaterials science.
Mesoporous silica nanoparticles (MSNs) with closed pores have significant potential for applications such as low-dielectric-constant materials and bio-imaging owing to their controlled accessibility. In this study, we successfully prepared MSNs with closed pores by a simple hydrothermal treatment in ethanol. The mesostructure changed from open to closed mesopores through hydrothermal treatment. This simple method enabled the preparation of closed pores with encapsulated guest species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.