It has been established that an in situ-generated cationic platinum(II)/rac-BINAP complex catalyzes the intramolecular dearomative 5-endo spirocyclization of N-(methylnaphthalenyl)propiolamides via the deprotonation−protonation sequence (formal aromatic ene reaction). Mechanistic studies revealed that our previously reported dearomative 6-endo cyclization followed by the Friedel−Crafts reaction is kinetically and thermodynamically unfavored, and thus, the 5-endo spirocyclization proceeds selectively.
Cationic Au(I) complex-catalyzed double cyclizations of 1,2-dialkynylbenzene derivatives are valuable for the straightforward synthesis of ladder-type π-conjugated compounds. We have previously developed a method for synthesizing ladder-type π-conjugated molecules with spiro skeleton (spiro fluorene-phenylene vinylenes) by the triple cyclization of 1-biphenylethynyl-2-phenylethynylbenzenes using an AuCl(SMe2)/tBuXPhos/AgNTf2 catalyst system. Experimental mechanistic studies revealed that an Ag(I) complex or HNTf2, as well as a cationic Au(I) complex, catalyzes different reaction steps. However, detailed insight into which of the Ag(I) complex or HNTf2 functions as the actual cocatalyst and the origin of the selectivity of the reaction have not been elucidated. Here we report a detailed reaction mechanism for this triple cyclization by dual catalysis based on computational studies. A cationic Au(I) complex catalyzes the first and second cyclization steps, whose regioselectivity is thermodynamically and kinetically controlled. The third spirocyclization step to construct a spirocenter is catalyzed by in situ generated HNTf2 rather than an Au(I) or Ag(I) complex via a benzyl cation intermediate. The present Au(I)/Brønsted acid dual-catalyzed mechanism of the triple cyclization of 1-biphenylethynyl-2-phenylethynylbenzenes provides complimentary activation modes to the conventionally used single Au(I)-catalyzed one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.