The study aimed to develop machine learning models that have strong prediction power and interpretability for diagnosis of glaucoma based on retinal nerve fiber layer (RNFL) thickness and visual field (VF). We collected various candidate features from the examination of retinal nerve fiber layer (RNFL) thickness and visual field (VF). We also developed synthesized features from original features. We then selected the best features proper for classification (diagnosis) through feature evaluation. We used 100 cases of data as a test dataset and 399 cases of data as a training and validation dataset. To develop the glaucoma prediction model, we considered four machine learning algorithms: C5.0, random forest (RF), support vector machine (SVM), and k-nearest neighbor (KNN). We repeatedly composed a learning model using the training dataset and evaluated it by using the validation dataset. Finally, we got the best learning model that produces the highest validation accuracy. We analyzed quality of the models using several measures. The random forest model shows best performance and C5.0, SVM, and KNN models show similar accuracy. In the random forest model, the classification accuracy is 0.98, sensitivity is 0.983, specificity is 0.975, and AUC is 0.979. The developed prediction models show high accuracy, sensitivity, specificity, and AUC in classifying among glaucoma and healthy eyes. It will be used for predicting glaucoma against unknown examination records. Clinicians may reference the prediction results and be able to make better decisions. We may combine multiple learning models to increase prediction accuracy. The C5.0 model includes decision rules for prediction. It can be used to explain the reasons for specific predictions.
Role-based access control (RBAC) is recognized as an excellent model for access control in an enterprise environment. In large enterprises, effective RBAC administration is a major issue. ARBAC97 is a well-known solution for decentralized RBAC administration. ARBAC97 authorizes administrative roles by means of 'role ranges' and 'prerequisite conditions'. Although attractive and elegant in their own right, we will see that these mechanisms have significant shortcomings.We propose an improved role administration model named ARBAC02 to overcome the weaknesses of ARBAC97. ARBAC02 adopts the organization unit for new user and permission pools independent of role or role hierarchy. It uses a refined prerequisite condition. In addition, we present a bottomup approach to permission-role administration in contrast to the top-down approach of ARBAC97.
As datasets continue to increase in size, it is important to select the optimal feature subset from the original dataset to obtain the best performance in machine learning tasks. Highly dimensional datasets that have an excessive number of features can cause low performance in such tasks. Overfitting is a typical problem. In addition, datasets that are of high dimensionality can create shortages in space and require high computing power, and models fitted to such datasets can produce low classification accuracies. Thus, it is necessary to select a representative subset of features by utilizing an efficient selection method. Many feature selection methods have been proposed, including recursive feature elimination. In this paper, a hybrid-recursive feature elimination method is presented which combines the feature-importance-based recursive feature elimination methods of the support vector machine, random forest, and generalized boosted regression algorithms. From the experiments, we confirm that the performance of the proposed method is superior to that of the three single recursive feature elimination methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.