Stretchable energy storage devices receive a considerable attention at present due to their growing demand for powering wearable electronics. A vital component in stretchable energy storage devices is its electrode which should endure a large and repeated number of mechanical deformations during its prolonged use. It is crucial to develop a technology to fabricate highly deformable electrode in an easy and an economic manner. Here, the fabrication of stretchable electrode substrates using 3D‐printing technology is reported. The ink for fabricating it contains a mixture of sacrificial sugar particles and polydimethylsiloxane resin which solidifies upon thermal curing. The printed stretchable substrate attains a porous structure after leaching the sugar particles in water. The resulting printed porous stretchable substrates are then utilized as electrodes for Li‐ion batteries (LIBs) after loading them with electrode materials. The batteries with stretchable electrodes exhibit a decent electrochemical performance comparable to that of the conventional electrodes. The stretchable electrodes also exhibit a stable electrochemical performance under various mechanical deformations and even after several hundreds of stretch/release cycles. This work provides a feasible route for constructing LIBs with high stretchability and enhanced electrochemical performance thereby providing a platform for realizing stretchable batteries for next generation wearable electronics.
The development of gel polymer electrolytes (GPEs) for lithium-ion batteries (LIBs) has paved the way to powering futuristic technological applications such as hybrid electric vehicles and portable electronic devices. Despite their multiple advantages, non-aqueous liquid electrolytes (LEs) possess certain drawbacks, such as plasticizers with flammable ethers and esters, electrochemical instability, and fluctuations in the active voltage scale, which limit the safety and working span of the batteries. However, these shortcomings can be rectified using GPEs, which result in the enhancement of functional properties such as thermal, chemical, and mechanical stability; electrolyte uptake; and ionic conductivity. Thus, we report on PVDF-HFP/PMMA/PVAc-based GPEs comprising poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) and poly(methyl methacrylate) (PMMA) host polymers and poly(vinyl acetate) (PVAc) as a guest polymer. A physicochemical characterization of the polymer membrane with GPE was conducted, and the electrochemical performance of the NCM811/Li half-cell with GPE was evaluated. The GPE exhibited an ionic conductivity of 4.24 × 10−4 S cm−1, and the NCM811/Li half-cell with GPE delivered an initial specific discharge capacity of 204 mAh g−1 at a current rate of 0.1 C. The cells exhibited excellent cyclic performance with 88% capacity retention after 50 cycles. Thus, this study presents a promising strategy for maintaining capacity retention, safety, and stable cyclic performance in rechargeable LIBs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.