In this study, Chiral Metamaterial Sensor (CMS), which is designed by utilizing a Split Ring Resonators (SRR) has been employed to reveal the two different types of sensor applications by experimentally and numerically. These applications include purity demonstration of methanol, ethanol and isopropyl alcohol (IPA) and fuel adulteration applications for petrol. All of the validations have been realized by measuring the complex permittivity values and reflection coefficients by using a vector network analyzer and a sample holder. For simulation, FIT based simulation program is employed. Both numerical and experimental study results are complying with each other. Sample holder which is developed in this study for microfluidic measurements can easily be tuned for other microfluidic sensor applications thanks to its unique design. Having 280MHz bandwidth with −40dB signal level indicates that the proposed structure is highly sensitive and gives a linear output according to purity and adulteration applications. Whereas, there are many metamaterial researches on purity applications in literature, this is the first study that investigates the purity of methanol, ethanol, isopropyl alcohol (IPA) and fuel adulteration of petrol by using a novel chiral metamaterial sensor designed specifically for the proposed applications.
The detection of branded and unbranded chemical materials is essential for the quality control assessment. In this work, a metamaterial inspired sensor is designed and fabricated, which incorporates oval-shaped wing resonators, in order to use to detect branded and unbranded diesels in the X-band frequency region. The simulation studies were carried out by using the Computer Simulation Technology (CST) Microwave studio. A transmission line was introduced into the sensor design and genetic algorithm was used to optimize the proposed structure. Parametric study was investigated by changing the permittivity, permeability of the sensor layer, width of the transmission line, materials of the substrate layer, and width of the resonator. Results showed that different factors can be considered to sense the chemical materials including the shift in resonant frequency and amplitude variation in the reflection or transmission spectrum. It was found that the sensible variation in the transmission value is about −3.2 dB, which is superior to that reported in literature. It was concluded that the sensor is highly sensitive to distinguish the branded diesel from the unbranded one, which makes it viable for detecting fluidics in the chemical industry and medicine.
Motor oils have to be changed periodically in a period of 10.000–20.000 km according to the motor types. A chiral metamaterial sensor that operates in X band is developed to determine the quality of motor oils, numerically analyzed and experimentally tested in this study. The proposed design has square and circular shaped resonators that are printed on IS680 substrate. Reflection coefficient parameters of S11 and S22 are employed for the verification of sensor. The physical principle behind the structure in this study is based on the degradation of motor oil, which changes dielectric constant and causes resonance frequency shifts. According to S11 reflection coefficient data, 40 MHz(0 km–10000 km) and 60 MHz(0 km–5000 km) resonant frequency shifts are observed between clear and dirty motor oils samples. These shifts have the values of 30 MHz(0 km–10000 km) and 120 MHz(0 km–5000 km), when we look at S22. The simulated and experimental study results are complying with each other. The novel side of this study is to have high sensitivity and higher quality factor when it is compared with similar study results. Furthermore, no such studies have been conducted so far in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.