In this study, the effect of aging at different temperatures and times on the microstructure and mechanical properties of AA7075-T6 alloy was investigated. The samples prepared for the experimental studies were subjected to solution, quenching, and then aging heat treatment at 100 ⁰C and 200 ⁰C for different periods (42-66-90 hours). The microstructure and mechanical properties of the experimental samples were investigated by hardness, compression test and scanning electron microscope (SEM). As a result of the studies, it was determined that the aging heat treatment had a positive effect on the microstructure and mechanical properties of the AA7075 alloy compared to the reference sample. Especially as a result of the heat treatments at 100 ⁰C, higher results were obtained in hardness and compression strength compared to the initial values.
Today's vehicle technology is based on internal combustion engines. However, hybrid models have been introduced to the market in recent years. The purpose of these models is to reduce fuel consumption. Hybrid vehicles are based on the principle of simultaneous operation of an electric and gasoline engine. According to this working principle, it is predicted that the use of internal combustion engines will continue for a long time. For these reasons, studies on fossil fuel-powered engines are still ongoing and are expected to continue in the future. Appropriate design and material selection come to the fore in studies on the engine and the machine elements that make up the engine. Therefore, it is the design and the suitability of the material used and the weight that should be considered in the production of the parts that make up the engine. The most important part to be considered while designing the engine elements is to maximize the effect of the engine on the vehicle, namely the performance, and to carry out the necessary studies to reach this level. For this, the design of the elements that make up the engine and the connecting rod, which is the subject of this study, is of great importance. Although the design factor in a connecting rod alone, which is a part of the engine and is expected to withstand the stresses formed in the engine, does not seem to be effective, the performance of the engine in terms of design and therefore weight is also affected by this situation. In this study, necessary analyzes were made in terms of performance by designing the connecting rod. Using four different materials; aluminum alloy, titanium alloy, steel alloy and cast iron, connecting rods designed using an ANSYS Workbench software were analyzed. In the analysis, studies on stress and deformation were carried out. As a result, it was concluded that the aluminum alloy material is the most suitable design in terms of both weight and material supply.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.