Background
Weeds are a major cause of low agricultural productivity. Some weeds have morphological features similar to crops, making them difficult to discriminate.
Results
We propose a novel method using a combination of filtered features extracted by combined Local Binary Pattern operators and features extracted by plant-leaf contour masks to improve the discrimination rate between broadleaf plants. Opening and closing morphological operators were applied to filter noise in plant images. The images at 4 stages of growth were collected using a testbed system. Mask-based local binary pattern features were combined with filtered features and a coefficient k. The classification of crops and weeds was achieved using support vector machine with radial basis function kernel. By investigating optimal parameters, this method reached a classification accuracy of 98.63% with 4 classes in the “bccr-segset” dataset published online in comparison with an accuracy of 91.85% attained by a previously reported method.
Conclusions
The proposed method enhances the identification of crops and weeds with similar appearance and demonstrates its capabilities in real-time weed detection.
Recent advances in liquid crystal (LC) materials and VLSI technology have enabled the development of multi-phase spatial light modulators (SLM) that can perform high-resolution, dynamic optical beam positioning as well as temporal and spatial beam shaping in the 1550 nm optical communication window. These attractive features can effectively be used to achieve optical switching, optical spectral equalization, tunable optical filtering and many other functions that are important for future reconfigurable optical telecommunication networks. In this paper, we review potential optical telecommunication applications based on LC-SLMs.
Weed invasions pose a threat to agricultural productivity. Weed recognition and detection play an important role in controlling weeds. The challenging problem of weed detection is how to discriminate between crops and weeds with a similar morphology under natural field conditions such as occlusion, varying lighting conditions, and different growth stages. In this paper, we evaluate a novel algorithm, filtered Local Binary Patterns with contour masks and coefficient k (k-FLBPCM), for discriminating between morphologically similar crops and weeds, which shows significant advantages, in both model size and accuracy, over state-of-the-art deep convolutional neural network (CNN) models such as VGG-16, VGG-19, ResNet-50 and InceptionV3. The experimental results on the “bccr-segset” dataset in the laboratory testbed setting show that the accuracy of CNN models with fine-tuned hyper-parameters is slightly higher than the k-FLBPCM method, while the accuracy of the k-FLBPCM algorithm is higher than the CNN models (except for VGG-16) for the more realistic “fieldtrip_can_weeds” dataset collected from real-world agricultural fields. However, the CNN models require a large amount of labelled samples for the training process. We conducted another experiment based on training with crop images at mature stages and testing at early stages. The k-FLBPCM method outperformed the state-of-the-art CNN models in recognizing small leaf shapes at early growth stages, with error rates an order of magnitude lower than CNN models for canola–radish (crop–weed) discrimination using a subset extracted from the “bccr-segset” dataset, and for the “mixed-plants” dataset. Moreover, the real-time weed–plant discrimination time attained with the k-FLBPCM algorithm is approximately 0.223 ms per image for the laboratory dataset and 0.346 ms per image for the field dataset, and this is an order of magnitude faster than that of CNN models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.