BackgroundExtrapulmonary tuberculosis (EPTB) has an increasing rate in Turkey. The reason remains largely unknown. A better understanding of the demographic and microbial characteristics of EPTB in the Turkish population would extend the knowledgebase of EPTB and allow us to develop better strategies to control tuberculosis (TB).MethodsWe retrospectively evaluated clinical and laboratory data of 397 bacteriologically-confirmed TB cases diagnosed during an eight year-period using by chi-square analysis and multivariate logistic regression model.ResultsOf the 397 study patients, 103 (25.9%) had EPTB and 294 (74.1%) had pulmonary tuberculosis (PTB). The most commonly seen two types of EPTB were genitourinary TB (27.2%) and meningeal TB (19.4%). TB in bone/joints, pleural cavity, lymph nodes, skin, and peritoneal cavity occurred at a frequency ranging from 9.7% to 10.7%. The age distribution was significantly different (P < 0.01) between PTB and EPTB, with patients older than 45 years tending to have an increased risk of EPTB. Furthermore, the distribution of different types of EPTB differed significantly among age groups (P = 0.03). Meningeal and bone and/or joint TB were more commonly observed among the male patients, while lymphatic, genitourinary, and peritoneal TB cases were more frequently seen among females. Unique strain infection was statistically significantly associated with EPTB (OR: 2.82, 95% CI [1.59, 5.00])ConclusionsEPTB accounted for a significant proportion of TB cases in Malatya, Turkey between 2001 and 2007. The current study has provided an insight into the dynamics of EPTB in Malatya, Turkey. However, the risk factors for having EPTB in Malatya, Turkey remain to be assessed in future studies using population-based or randomly selected sample.
Three Inula species, I. viscosa, I. helenium ssp. turcoracemosa and I. montbretiana, collected from different locations of Anatolia were investigated for their antioxidant and antimicrobial potential, and their total phenolic content and phenolic composition. Antioxidant activities of various extracts of the plant parts were measured using DPPH radical scavenging and ABTS assays. Antimicrobial potential of methanol extracts of the plant parts was determined by the agar dilution method against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Candida tropicalis. All the extracts were more active against Gram-positive bacteria and yeasts than Gram-negative bacteria. The extracts exhibited antioxidant and antimicrobial activities in different concentrations. Total phenolic concentration of the extracts was estimated with Folin-Ciocalteu reagent using gallic acid as standard. The total phenolic content varied widely in different parts of the three tested Inula species, ranging from 21.1 ± 0.8 to 190.9 ± 6.1 mg GAE/g extract. Phenolic components, such as chlorogenic acid, caffeic acid, rutin, myricetin, quercetin, luteolin and kaempferol were quantified by HPLC-DAD in the methanol extracts of the Inula species. It was obvious that the antioxidant and antimicrobial properties of the plants were due to the phenolics.
BackgroundInvestigation of genetic heterogeneity and spoligotype-defined lineages of drug-resistant Mycobacterium tuberculosis clinical isolates collected during a three-year period in two university hospitals and National Tuberculosis Reference and Research Laboratory in Ankara, Turkey.Methods and FindingsA total of 95 drug-resistant M. tuberculosis isolates collected from three different centers were included in this study. Susceptibility testing of the isolates to four major antituberculous drugs was performed using proportion method on Löwenstein–Jensen medium and BACTEC 460-TB system. All clinical isolates were typed by using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) methods. Seventy-three of the 95 (76.8%) drug resistant M. tuberculosis isolates were isoniazid-resistant, 45 (47.4%) were rifampicin-resistant, 32 (33.7%) were streptomycin-resistant and 31 (32.6%) were ethambutol-resistant. The proportion of multidrug-resistant isolates (MDR) was 42.1%. By using spoligotyping, 35 distinct patterns were observed; 75 clinical isolates were grouped in 15 clusters (clustering rate of 79%) and 20 isolates displayed unique patterns. Five of these 20 unique patterns corresponded to orphan patterns in the SITVIT2 database, while 4 shared types containing 8 isolates were newly created. The most prevalent M. tuberculosis lineages were: Haarlem (23/95, 24.2%), ill-defined T superfamily (22/95, 23.2%), the Turkey family (19/95, 20%; previously designated as LAM7-TUR), Beijing (6/95, 6.3%), and Latin-America & Mediterranean (LAM, 5/95 or 5.3%), followed by Manu (3/95, 3.2%) and S (1/95, 1%) lineages. Four of the six Beijing family isolates (66.7%) were MDR. A combination of IS6110-RFLP and spoligotyping reduced the clustering rate from 79% to 11.5% among the drug resistant isolates.ConclusionsThe results obtained showed that ill-defined T, Haarlem, the Turkey family (previously designated as LAM7-TUR family with high phylogeographical specifity for Turkey), Beijing and LAM were predominant lineages observed in almost 80% of the drug-Resistant M. tuberculosis complex clinical isolates in Ankara, Turkey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.