In a large consanguineous family of Turkish origin, genome-wide homozygosity mapping revealed a locus for recessive nonsyndromic hearing impairment on chromosome 14q24.3-q34.12. Fine mapping with microsatellite markers defined the critical linkage interval to a 18.7 cM region flanked by markers D14S53 and D14S1015. This region partially overlapped with the DFNB35 locus. Mutation analysis of ESRRB, a candidate gene in the overlapping region, revealed a homozygous 7 bp duplication in exon 8 in all affected individuals. This duplication results in a frame shift and premature stop codon. Sequence analysis of the ESRRB gene in the affected individuals of the original DFNB35 family and in three other DFNB35-linked consanguineous families from Pakistan revealed four missense mutations. ESRRB encodes the estrogen-related receptor beta protein, and one of the substitutions (p.A110V) is located in the DNA-binding domain of ESRRB, whereas the other three are substitutions (p.L320P, p.V342L, and p.L347P) located within the ligand-binding domain. Molecular modeling of this nuclear receptor showed that the missense mutations are likely to affect the structure and stability of these domains. RNA in situ hybridization in mice revealed that Esrrb is expressed during inner-ear development, whereas immunohistochemical analysis showed that ESRRB is present postnatally in the cochlea. Our data indicate that ESRRB is essential for inner-ear development and function. To our knowledge, this is the first report of pathogenic mutations of an estrogen-related receptor gene.
In a consanguineous Turkish family, a locus for autosomal recessive nonsyndromic hearing impairment (ARNSHI) was mapped to chromosome 2q31.1-2q33.1. Microsatellite marker analysis in the complete family determined the critical linkage interval that overlapped with DFNB27, for which the causative gene has not yet been identified, and DFNB59, a recently described auditory neuropathy caused by missense mutations in the DFNB59 gene. The 352-amino acid (aa) DFNB59 gene product pejvakin is present in hair cells, supporting cells, spiral ganglion cells, and the first three relays of the afferent auditory pathway. A novel homozygous nonsense mutation (c.499C>T; p.R167X) was detected in the DFNB59 gene, segregating with the deafness in the family. The mRNA derived from the mutant allele was found not to be degraded in lymphocytes, indicating that a truncated pejvakin protein of 166 aa may be present in the affected individuals. Screening of 67 index patients from additional consanguineous Turkish families with autosomal recessive hearing impairment revealed a homozygous missense mutation (c.547C>T; p.R183W) that segregates with the hearing impairment in one family. Furthermore, in a panel of 83 Dutch patients, two additional novel mutations (c.509_512delCACT; p.S170CfsX35 and c.731T>G; p.L244R), which were not present in ethnically matched controls, were found heterozygously. Together, our data indicate that also nonsense mutations in DFNB59 cause nonsyndromic hearing loss, but that mutations in DFNB59 are not a major cause of nonsyndromic hearing impairment in the Turkish and Dutch population.
Sialolithiasis is one of the most common diseases of salivary glands in middle-aged patients. Sialoliths are localized in submandibular glands in nearly 80% of the reported cases and they are classified as ‘giant’ in case any dimension exceeds 15 mm. Giant sialolith in submandibular gland is a rare disorder. Here, an unusual case of giant sialolith in submandibular gland is reported. A 42-year-old man referred with complaints of recurrent pain and swelling in the left submandibular area. Computerized tomography revealed a calcified mass of 42 × 17 mm size within the submandibular gland. Excision was performed in the submandibular gland and a giant sialolith of 35 mm length localized in the body of the gland was detected. The postoperative period was uneventful and the patient fully recovered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.