No abstract
This study was conducted to investigate comfort and microbial protection performances of two reusable and two disposable surgical gowns by subjective wear trials conducted on eight healthy Dentistry faculty students under environmental conditions suitable for a surgical operation. Protection performances of the gowns were tested by a modified bacterial resistance test. Physiological and psychological data were obtained during wear trials. All objective and subjective results were evaluated in the light of standard physical, mechanical, permeability, and resistance (thermal and water vapor) characteristics of the fabrics. According to the results, thermal comfort performance of the woven gown produced from microfiber polyester was the best according to subjective wear trial and microbial resistance test results. Disposable nonwoven gowns had lower comfort performances despite their higher permeability and lower resistance values. Moreover, chest skin temperature, arm microclimate temperature, and arm relative humidity are the physiological parameters significantly correlated with subjective comfort evaluation results.
In this study, polypropylene (PP) nonwoven fabric which can be used as topsheet layer of an absorbent hygienic product was modified by natural based antibacterial agents. Antibacterial herbal agents (cinnamaldehyde, geraniol, phenylethyl alcohol) were sprayed by ethanol or applied by means of polylactic acid (PLA) and polycyclohexene oxide (PCHO) based polymers prepared by three different chemical methods. Characterization of synthesized materials was conducted via thermogravimetric analysis (TGA), differential thermal analysis (DTA), and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX). Besides characterization, antibacterial and pH buffering performances of antibacterial polymers alone and on PP fabric were tested by antibacterial and pH tests. Effects of antibacterial treatments on air permeability and absorption period of nonwoven fabrics were also analyzed. According to the results, biopolymers changed the thermal stability of PP nonwoven fabric. Antibacterial performances can be ranked as cinnamaldehyde, geraniol, and phenylethyl alcohol from the best. Besides a slight decrease about liquid absorption performance, all of the treated topsheet fabrics are sufficient for an absorbent hygienic product.
Purpose – The purpose of this paper is to obtain thermal sensations arise during skin-antibacterial modified foot sweat pad contact by subjective forearm test carried out on 14 males. Design/methodology/approach – Sweat pads were designed for the foot and topsheet layers, constituting of polypropylene (PP) or polylactic acid (PLA) nonwoven fabrics, were modified by herbal antibacterial agents (cinnamaldehyde, geraniol, phenylethyl alcohol). Antibacterial agents were applied directly or within polymers which prepared by three different polymerization methods. Dry and wet pads (including water 50 percent of absorption capacity) were placed on the forearms of the subjects for a constant period under controlled environmental conditions. Liquid absorption and transfer characteristics of the topsheet layers were measured by standard methods (drop, absorption capacity, wetback tests) and moisture management tester parameters. Subjective coolness and dampness sensations arise during first touch of the pads were gathered and results were discussed according to liquid absorption and transfer characteristics of the sweat pads which differ according to topsheet fabrics and different antibacterial treatments. Findings – The paper showed that, direct or polymerization-based antibacterial applications created significantly different coolness and dampness sensations when compared with raw PP and PLA fabrics. Significant relationships were obtained between coolness sensation and both dampness sensation and absorption capacity results. Originality/value – Forearm test is normally applied on standard fabrics but in this study, it was applied on a disposable product which is used within foot clothing system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.