Demiryolları insanı ve yükünü geçmişten günümüze kadar taşımış, artan ilgi ve talep nedeniyle gelecekte de taşımaya devam edecektir. Demiryollarında güvenli seyir için ray sağlamlığının otonom olarak tespit edilip önceden önlem alınması önem arz etmektedir. Yapay zekâ tabanlı bilgisayarlı görü uygulamaları kapsamında derin öğrenme modelleri ile otonom kusur tespiti yapılabilmektedir. Son yıllarda açıklanabilir yapay zeka yaklaşımı kusur (anomali) tespitinde popüler olmuştur. Sistem tarafından tespit edilen kusurun, niçin kusurlu olduğunun asıl karar verici olan insana açıklanması gerekmektedir. Bu çalışmada ray yüzey kusurlarını içeren etiketsiz görüntü veri seti ile sınıflandırıcı katmanları özelleştirilmiş Vgg16 ve MobileNetV3 Small ağları eğitilmiştir. Denetimsiz öğrenme ile etiketsiz verilerden sağlam rayların özelliklerini öğrenen ağlara, test için verilen görüntülerdeki kusurlar tespit ettirilmiştir. Kusurlar açıklama haritaları ile kullanıcıya gösterilmiştir. Ağların sınıflandırma başarısında Vgg16 %98, MobileNetV3 Small %96 doğruluk seviyesine ulaşırken, kusurlu bölgenin işaretlenmesini sağlayan açıklama haritalarında Vgg16’nin daha isabetli çıkarımlar yaptığı gözlemlenmiştir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.