First identified in 2012, Middle East respiratory syndrome (MERS) is caused by an emerging human coronavirus, which is distinct from the severe acute respiratory syndrome coronavirus (SARS-CoV), and represents a novel member of the lineage C betacoronoviruses. Since its identification, MERS coronavirus (MERS-CoV) has been linked to more than 1372 infections manifesting with severe morbidity and, often, mortality (about 495 deaths) in the Arabian Peninsula, Europe, and, most recently, the United States. Human-to-human transmission has been documented, with nosocomial transmission appearing to be an important route of infection. The recent increase in cases of MERS in the Middle East coupled with the lack of approved antiviral therapies or vaccines to treat or prevent this infection are causes for concern. We report on the development of a synthetic DNA vaccine against MERS-CoV. An optimized DNA vaccine encoding the MERS spike protein induced potent cellular immunity and antigen-specific neutralizing antibodies in mice, macaques, and camels. Vaccinated rhesus macaques seroconverted rapidly and exhibited high levels of virus-neutralizing activity. Upon MERS viral challenge, all of the monkeys in the control-vaccinated group developed characteristic disease, including pneumonia. Vaccinated macaques were protected and failed to demonstrate any clinical or radiographic signs of pneumonia. These studies demonstrate that a consensus MERS spike protein synthetic DNA vaccine can induce protective responses against viral challenge, indicating that this strategy may have value as a possible vaccine modality against this emerging pathogen.
In recent years, DNA vaccines have undergone a number of technological advancements that have incited renewed interest and heightened promise in the field. Two such improvements are the use of genetically engineered cytokine adjuvants and plasmid delivery via in vivo electroporation (EP), the latter of which has been shown to increase antigen delivery by nearly 1000-fold compared to naked DNA plasmid delivery alone. Both strategies, either separately or in combination, have been shown to augment cellular and humoral immune responses in not only mice, but also in large animal models. These promising results, coupled with recent clinical trials that have shown enhanced immune responses in humans, highlight the bright prospects for DNA vaccines to address many human diseases.
Dengue virus (DENV) is the most important mosquito-borne viral infection in humans. In recent years, the number of cases and outbreaks has dramatically increased worldwide. While vaccines are being developed, none are currently available that provide balanced protection against all DENV serotypes. Advances in human antibody isolation have uncovered DENV neutralizing antibodies (nAbs) that are capable of preventing infection from multiple serotypes. Yet delivering monoclonal antibodies using conventional methods is impractical due to high costs. Engineering novel methods of delivering monoclonal antibodies could tip the scale in the fight against DENV. Here we demonstrate that simple intramuscular delivery by electroporation of synthetic DNA plasmids engineered to express modified human nAbs against multiple DENV serotypes confers protection against DENV disease and prevents antibody-dependent enhancement (ADE) of disease in mice. This synthetic nucleic acid antibody prophylaxis/immunotherapy approach may have important applications in the fight against infectious disease.
A DNA-based dMAb strategy induced rapid protection against an emerging viral infection. This method can be combined with DNA vaccination as a novel strategy to provide both short- and long-term protection against this emerging infectious disease. These studies have implications for pathogen treatment and control strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.