The space layout problem encompasses challenges that rely on a diverse range of contexts regarding urban planning and architectural design, during the traditional design phases which require immense effort and time for the evaluation of the spatial elements’ characteristic needs. In order to eliminate the burden of considering all multidimensional design aspects at the same time, this research presents a three-bodied computational method for locating the spaces of the given architectural design program in a project site, according to the defined list of design objectives and criteria. Besides the determination of the layout according to the requirements of the spatial elements, this research proposes an integration of the space syntax theory’s analytical compounds in terms of Justified Graph Analysis and Integration Values as the fitness criteria for the multi-objective evolutionary optimization in the computational model. To satisfy the integrity levels of each various characterized element within site organization, that are implied inherently by the architectural design program and generate a sustainable space network layout for the project site.
The urban built environment of contemporary cities confronts a constant risk of deterioration due to natural or artificial reasons. Especially political aggression and war conflicts have significant destructive effects on architectural and cultural heritage buildings. The post-war urbanscapes demonstrate the striking effects of the armed conflicts during the hot war encounters. However, the residues of the urbanscapes become the actual indicators of damage and loss. Since today we can make future predictions using a variety of machine learning algorithms, it is possible to represent hybrid projections of urban heterotopias. In this context, this research proposes to explore dystopian post-war projections for modern cities based on their architectural styles and demonstrate the utopian scenarios of rehabilitation possibilities for the damaged urban built environment of post-war cities by using generative adversarial network (GAN) algorithms. Two primary datasets containing the post-war and pre-war building facades have been given as the input data for the CycleGAN and pix2pix GAN models. Thus, two different image-to-image GAN models have been compared regarding their ability to produce legible building facade projections in architectural features. Besides, the machine learning process results have been discussed in terms of cities’ utopian and dystopian future predictions, demonstrating the war conflicts’ immense effects on the built environment. Moreover, the immediate consequence of the destructive aggression on tangible and intangible architectural heritage would become visible to inhabitants and policymakers when the AI-generated rehabilitation potentials have been exposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.