Detection of explosive residues in soil and postblast debris is an important issue in sensor design for environmental and criminological purposes. An easy-to-use and low-cost gold nanoparticle (AuNP)-based colorimetric sensor was developed for the determination of nitroaromatic explosives, i.e., trinitrotoluene (TNT) and tetryl, capable of analyte detection at picomolar (pM) levels. The sensor nanoparticles were synthesized by functionalizing the negatively charged thioglycolic acid (TGA)-modified AuNPs with positively charged (±)-trans-1,2-diaminocyclohexane (DACH) at a carefully calculated pH. The working principle of the sensor is charge-transfer (CT) interaction between the electron-rich free amino (−NH 2 ) group of DACH and the electron-deficient −NO 2 groups of TNT/tetryl, added to possible nanoparticle agglomerization via electrostatic interaction of TNT-Meisenheimer anions with more than one cationic DACH-modified AuNP. The limit of detection (LOD) and limit of quantification (LOQ) of the sensor were 1.76 pM and 5.87 pM for TNT and 1.74 pM and 5.80 pM for tetryl, respectively. TNT, tetryl, and tetrytol, extracted from a nitroaromatic explosive-contaminated soil sample, were determined with the proposed sensor, yielding good recoveries. The sensor could be selectively applied to various mixtures of TNT with common energetic materials such as RDX, HMX, and PETN. Additionally, common soil ions (Cl − , NO 3 − , SO 4 2− , K + , Mg 2+ , Ca 2+ , Cu 2+ , Fe 2+ , Fe 3+ , and Al 3+ ) as well as detergents, sugar, sweeteners, acetylsalicylic acid (aspirin), caffeine, and paracetamol-based painkiller drugs, which may be used as camouflage materials for explosives, either had no adverse effects or removable interferences on the detection method. The developed method was statistically validated against a GC−MS literature method.