The Bacillus subtilis strain 168 genome contains the chr3N-chr3C genes encoding the Chr3N/Chr3C protein pair of the chromate ion transporter (CHR) superfamily. Chr3N/Chr3C confers chromate resistance in Escherichia coli only when both proteins are expressed. Upstream of chr3N is the chrS gene encoding ChrS, a protein with homology to the Lrp/AsnC family of transcriptional regulators. When the chrS-chr3N-chr3C gene cluster was transferred to E. coli, a diminished level of chromate resistance was observed, as compared with E. coli transformants bearing only the chromate resistance genes, which displayed full resistance. These data suggested that the chrS gene product acts as negative regulator. RT-PCR assays demonstrated that expression of chrS diminishes transcription of the chromate resistance genes in E. coli, and that this repression was overcome by chromate. Electrophoretic mobility shift assays showed that purified ChrS protein specifically binds to the 5' region of chrS. These results indicate that the chr gene cluster forms an operon regulated negatively by ChrS binding to its own gene's regulatory region, and positively by chromate ions. Sequence analysis revealed similar operons in many Bacillales strains, suggesting some adaptive advantage. This is the first example of a bacterial heavy-metal resistance system controlled by an Lrp-type transcriptional regulator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.