Immune checkpoint blockade represents a major breakthrough in advanced non-small cell lung cancer (NSCLC) therapy. However, success is limited to a subset of patients and there is a critical need to identify robust biomarkers associated with clinical response. In this study, we assessed whether pre-existing immunological characteristics, as well as immune parameters measured during treatment, might provide such clinical guidance. We studied blood samples collected at baseline and during treatment in a cohort of advanced NSCLC patients (n = 74) treated with nivolumab. Several lymphocyte subsets and biomarkers were then correlated with overall survival (OS) as well as clinical response, assessed using RECIST criteria. We found that patients characterized by longer OS had higher levels of CD3 + , CD4 + , and CD8 + T cells but lower levels of NK cells at baseline. Moreover, that they displayed a statistically significant lower expression of PD-1 on both CD3 + and CD8 + T cells (p = 0.013 and p = 0.033, respectively). The pre-treatment level of exhausted T cells (CD8 + PD1 + Eomes + ) was significantly lower in patients with controlled disease (CD), defined as partial response (PR), and stable disease (SD), compared to those with progressive disease (PD) (p = 0.046). In CD patients, the frequency of exhausted CD8 + T cells further decreased during treatment cycles (p = <0.0001, p = 0.0032, and p = 0.0239, respectively). In conclusion, our results suggest that the distribution of lymphocyte subsets and expression of PD-1 on T cells before treatment may help predict the outcome of anti-PD-1 treatment in NSCLC patients. In addition, assessing the initial levels of exhausted T cells as well as their decrease upon treatment may also predict response and clinical outcome.
Soluble interleukin (IL)-15 exists under two forms: as monomer (sIL-15) or as heterodimeric complex in association with sIL-15Rα (sIL-15/IL-15Rα). Both forms have been successfully tested in experimental tumor murine models and are currently undergoing investigation in phase I/II clinical trials. Despite more than 20 years research on IL-15, some controversial issues remain to be addressed. A first point concerns the detection of the sIL-15/IL-15Rα in plasma of healthy donors or patients with cancer and its biological significance. The second and third unsolved question regards the protumorigenic role of the IL-15/IL-15Rα complex in human cancer and the detrimental immunological consequences associated to prolonged exposure of natural killer (NK) cells to both forms of soluble IL-15, respectively. Data suggest that in vivo prolonged or repeated exposure to monomeric sIL-15 or the soluble complex may lead to NK hypo-responsiveness through the expansion of the CD8+/CD44+ T cell subset that would suppress NK cell functions. In vitro experiments indicate that soluble complex and monomeric IL-15 may cause NK hyporesponsiveness through a direct effect caused by their prolonged stimulation, suggesting that this mechanism could also be effective in vivo. Therefore, a better knowledge of IL-15 and a more appropriate use of both its soluble forms, in terms of concentrations and time of exposure, are essential in order to improve their therapeutic use. In cancer, the overproduction of sIL-15/IL-15Rα could represent a novel mechanism of immune escape. The soluble complex may act as a decoy cytokine unable to efficiently foster NK cells, or could induce NK hyporesponsiveness through an excessive and prolonged stimulation depending on the type of IL-15Rα isoforms associated. All these unsolved questions are not merely limited to the knowledge of IL-15 pathophysiology, but are crucial also for the therapeutic use of this cytokine. Therefore, in this review, we will discuss key unanswered issues on the heterogeneity and biological significance of IL-15 isoforms, analyzing both their cancer-related biological functions and their therapeutic implications.
Heme oxygenase 1 (HO‐1) plays a pivotal role in preventing cell damage. Indeed, through the antioxidant, antiapoptotic and anti‐inflammatory properties of its metabolic products, it favors cell adaptation against different stressors. However, HO‐1 induction has also been related to the gain of resistance to therapy in different types of cancers and its involvement in cancer immune‐escape has been hypothesized. We have investigated the role of HO‐1 expression in Vemurafenib‐treated BRAFV600 melanoma cells in modulating their susceptibility to NK cell‐mediated recognition. Different cell lines, isolated in house from melanoma patients, have been exposed to 1–10 μM PLX4032, which efficiently reduced ERK phosphorylation. In three lines, Vemurafenib was able to induce only a limited decrease in cell viability, while HO‐1 expression was upregulated. HO‐1 silencing/inhibition was able to induce a further significant reduction of Vemurafenib‐treated melanoma viability. Moreover, while NK cell degranulation and killing activity were decreased upon interaction with melanoma exposed to Vemurafenib, HO‐1 silencing was able to completely restore NK cell ability to degranulate and kill. Furthermore, melanoma cell treatment with Vemurafenib downregulated the expression of ligands of NKp30 and NKG2D activating receptors, and HO‐1 silencing/inhibition was able to restore their expression. Our results indicate that HO‐1 downregulation can both improve the efficacy of Vemurafenib on melanoma cells and favor melanoma susceptibility to NK cell‐mediated recognition and killing.
Nivolumab is one of the most commonly used monoclonal antibodies for advanced non-small cell lung cancer treatment, to the extent that the presence of its anti-antibody is considered a negative prognostic factor. Vitamin D (VD) modulates expression of the genes involved in drug metabolism and elimination. Immune system regulation and immunodeficiency is frequent in non-small cell lung cancer patients. To date, no data have been reported about the relationship between nivolumab and VD. The aim of this study was to quantify plasma 25-hydroxyVD (25-VD) and 1,25-VD, nivolumab, and its anti-antibody before starting treatment (baseline) and at 15, 45 and 60 days of therapy. VD-pathway-associated gene single nucleotide polymorphisms (SNPs) were also evaluated. Molecules were quantified through enzyme-linked immunosorbent assay, and SNPs through real-time PCR. Forty-five patients were enrolled. Median nivolumab concentrations were 12.5 μg/mL, 22.3 μg/mL and 27.1 μg/mL at 15, 45 and 60 days respectively. No anti-nivolumab antibodies were found. Correlations were observed between nivolumab concentrations and 25-VD levels. Nivolumab concentrations were affected by VD-pathway-related gene SNPs. VDBP AC/CC genotype and baseline 25-VD < 10 ng/mL predicted a nivolumab concentration cut-off value of <18.7 μg/mL at 15 days, which was associated with tumor progression. This is the first study showing VD marker predictors of nivolumab concentrations in a real-life context of non-small cell lung cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.